To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average...To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average diameters, ranging from 231 to 512 μm, are fluidized in the presence of magnetic fields with specified values of the intensity in the range of zero to 7330 A/m, and the particle fluidization curves are plotted. For marking the stable fluidization zone in the curves, the minimum bubbling velocities of particles are measured by the pressure-drop fluctuation. Based on the fluidization curves, the influences of the average particle diameter and magnetic field intensity on the zone are analyzed and discussed. A correlation to determine the stable fluidization zone is derived from the experimental data, using three dimensionless numbers, i. e., the ratio of magnetic potential to gravity potential, the Reynolds number and the Archimedes number. Compared with available data reported, it is shown that the correlation is more simplified to predict relative parameters for the bed operating in the state of stable fluidization under reasonable conditions.展开更多
Based on the characteristic of deep rock layers and the theory of key strata,we analysed elastic mechanical characteristics of key strata by using elastic plate theory.The results show that the deformation and distrib...Based on the characteristic of deep rock layers and the theory of key strata,we analysed elastic mechanical characteristics of key strata by using elastic plate theory.The results show that the deformation and distribution of internal forces of key strata vary with different mine boundary conditions.The boundary values of key strata with three point boundaries and one fixed boundary is greater than that with four fixed boundaries.Considering the rheology of key strata under low stress conditions,we selected a generalized Kelvin model to analyse the rheology characteristics of the key strata and discovered their instantaneous elastic phases.The rate of deformation decreased over time to the point where the key strata reached stability.But over this time,the effect on deformation became very clear. For high stress conditions,we chose a Burgers model and found deformation of key strata in the form of attenuation and steady-state creep and although the rate of deformation remained constant,secondary creep was obvious,causing instability in the system.As well,we analysed the effect of creep buckling and derived a relation between buckling force and time.展开更多
The present paper deals with both the steady-state and dynamic simulation of a plate heat exchanger, in counter-flow arrangement. A CFD (computational fluid dynamics) program FLUENT has been used to predict the temp...The present paper deals with both the steady-state and dynamic simulation of a plate heat exchanger, in counter-flow arrangement. A CFD (computational fluid dynamics) program FLUENT has been used to predict the temperature distribution in steady-state conditions in plate heat exchanger as well as fluid temperatures at exit of flow channels in transient condition. The results are presented for the heat exchanger, which is simulated according to the configuration of the plate heat exchanger used in the experiment. The simulated results obtained by the CFD model have been compared with the experimental data from the literature, which shows that the CFD model developed in this study is capable of predicting the steady-state and transient performance of the plate heat exchangers satisfactorily.展开更多
Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generate...Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generated near the junction of the strake and wing,which then moved towards the wing tip at certain wavelength and speed.Analyses were made in detail on the mechanism of the generation of the cross-flow vortex,that is,the inviscid cross-flow instability which differs from that of the swept blunt wing.Cross-section topology of the cross-flow vortex is also investigated,and the wavelength of the vortex array and the characteristic frequency are given.The analyses showed that the cross-flow vortices have an influence on the pressure distribution,which can cause a 10%-20% deviation from the averaged distribution.展开更多
The scenario of bypass transition is generally described theoretically as follows: low-frequency disturbances in the free-stream would generate long stream-wise streaks in the boundary layer, which later would induce ...The scenario of bypass transition is generally described theoretically as follows: low-frequency disturbances in the free-stream would generate long stream-wise streaks in the boundary layer, which later would induce secondary instability, leading to rapid increase of high-frequency disturbances, then possibly turbulent spots would emerge, and through their merging, fully developed turbulence appears. This description, however, is insufficient in the sense that it does not provide the explanation on why during the breakdown stage, a large number of waves with different frequencies and wave numbers would appear almost simultaneously, leading to a swift change of the mean flow profile. In this paper, the mechanism leading to this phenomenon is found to be the change of the stability characteristics of mean flow profile, which has a positive feedback effect on the change of the profile itself. And another interesting finding is that, during the transition, the unstable disturbance waves which appear first belong to a branch of inviscid modes, while following the change of the stability characteristics of the mean flow profile, the disturbance waves will change to another branch of inviscid modes, and the latter play the key role in bypass transition.展开更多
The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes (RANS) equations with k-co turbulence model. The first...The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes (RANS) equations with k-co turbulence model. The first stage of GE-E3 engine with squealer tip in the rotor was adopted to perform this work. The tip clearance was set to be 1% of the rotor blade height and the groove depth was specified as 2% of the span. The results showed that there were two vortexes in the tip gap which determined the local heat transfer characteristics. In the steady flow field, the high heat transfer coefficient existed at several positions. In the unsteady case, the flow field in the squealer tip was mainly influenced by the upstream wake and the interaction of the blades potential fields. These unsteady effects induced the periodic variation of the leakage flow and the vortexes, which resulted in the fluctuation of the heat transfer coefficient. The largest fluctuation of the heat transfer coefficient on the surface of the groove bottom exceeded 16% of the averaged value on the surface of the squealer tip.展开更多
Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equiv...Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equivalent to a uniform rotating motion which can be analyzed by using the stream surface theory of turbomachinery during a micro period of time. In this article, the N-S equations of the motion are expanded in a non-orthogonal curvilinear coordinate system, and simplified on stream surfaces of the flapping flight model. By using stream function me- thod, the three-dimensional unsteady flow equations are simplified as a two-order partial differential equation with variable coefficients eventually and the equation's iterative solving method on S1 and $2 stream surfaces of the flapping flight model is presented. Through expanding the relatively steady equations of flapping flight at an arbitrary time point of a stroke on meridional plane of the flapping flight model, it can use a relatively steady mo- tion to approximate the real flapping flight at that time point, and analyze the flow stability influenced by the wing's flexibility. It can be seen that the wing flexibility is related to the higher pressurization capacity and the flow stability, and the pressurization capacity of flexible wing is proportional to the angular speed, angular distor- tion rate and radius square.展开更多
A newly designed strut is proposed in this paper for fuel injection and flame holding in a liquid-kerosene-fueled supersonic combustor. The thickness of the strut is 8ram and the front blockage is about 8%. The charac...A newly designed strut is proposed in this paper for fuel injection and flame holding in a liquid-kerosene-fueled supersonic combustor. The thickness of the strut is 8ram and the front blockage is about 8%. The characteristic of this strut is that extra oxygen can be injected through a set of orifices at the back of the strut, which can change the local flow field structure and ER (Equivalence Ratio). Based on the above mentioned strut, a stable local flame is generated at the back of the strut and the main combustion can be organized around this local fire. Nu- merical simulation is conducted to compare the local flow field distribution at the back of the strut with/without extra oxygen injection. Experiments are conducted to test the combustion characteristics based on this fuel injec- tion and flame holding strategy. The temperature distribution which can reflect the local flame characteristic has been measured in the experiments conducted under cold incoming supersonic air flow condition. In addition, the overall combustion performance in a full-scale supersonic combustor has been evaluated in the experiments con- ducted under hot incoming supersonic air flow condition. Results show that this strut strategy is very promising since it can organize stable supersonic combustion at the center of the combustor without any cavity or rearward facing step. Besides that, even with the 8ram thick strut, the combustion can be stable in a wide range of ER from 0.25-1 by using liquid room-temperature kerosene.展开更多
The theory of limit cycles was applied to hydraulic hybrid vehicle (HHV) to analyze the dynamic characteristics of the system. The exact mathematical models based on configuration diagram of HHV were built to study on...The theory of limit cycles was applied to hydraulic hybrid vehicle (HHV) to analyze the dynamic characteristics of the system. The exact mathematical models based on configuration diagram of HHV were built to study on equilibrium points, nonexistence of limit cycle and stability of equilibrium points. The analysis showed that if the Young's modulus of fluid is neglected, the equilibrium points of the system will be distributed on both sides of the initial function. In addition, there is a unique equilibrium point according to the practical signification of the system parameters. The nonexistence analysis showed that there is no limit cycle for the system, no matter how the viscosity coefficient B changes. The stability analysis of equilibrium points showed that the system is asymptotically stable about the equilibrium point at B≥0 and the equilibrium point is the center point of the system at B=0. Finally, the phase diagrams of global topological structure of HHV system were entirely described according to qualitative analysis of the singular points at infinity.展开更多
In this paper, we investigate the spatiotemporal dynamics of a reactio^diffusion epi- demic model with zero-flux boundary conditions. The value of our study lies in two aspects: mathematically, by using maximum princ...In this paper, we investigate the spatiotemporal dynamics of a reactio^diffusion epi- demic model with zero-flux boundary conditions. The value of our study lies in two aspects: mathematically, by using maximum principle and the linearized stability theory, a priori estimates of the steady state system and the local asymptotic stability of positive constant solution are given. By using the implicit function theorem, the exis- tence and nonexistence of nonconstant positive steady states are shown. Applying the bifurcation theory, the global bifurcation structure of nonconstant positive steady states is established. Epidemiologically, through numerical simulations, under the conditions of the existence of nonconstant positive steady states, we find that the smaller the space, the easier the pattern formation; the bigger the diffusion, the easier the pattern formation. These results are beneficial to disease control, that is, we must do our best to control the diffusion of the infectious to avoid disease outbreak.展开更多
基金The National Natural Science Foundation of China(No50576013)
文摘To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average diameters, ranging from 231 to 512 μm, are fluidized in the presence of magnetic fields with specified values of the intensity in the range of zero to 7330 A/m, and the particle fluidization curves are plotted. For marking the stable fluidization zone in the curves, the minimum bubbling velocities of particles are measured by the pressure-drop fluctuation. Based on the fluidization curves, the influences of the average particle diameter and magnetic field intensity on the zone are analyzed and discussed. A correlation to determine the stable fluidization zone is derived from the experimental data, using three dimensionless numbers, i. e., the ratio of magnetic potential to gravity potential, the Reynolds number and the Archimedes number. Compared with available data reported, it is shown that the correlation is more simplified to predict relative parameters for the bed operating in the state of stable fluidization under reasonable conditions.
基金supported by the National Natural Science Foundation of China(No.50904065)the Program for New Century Excellent Talents in University(No.NCET-09-0728)
文摘Based on the characteristic of deep rock layers and the theory of key strata,we analysed elastic mechanical characteristics of key strata by using elastic plate theory.The results show that the deformation and distribution of internal forces of key strata vary with different mine boundary conditions.The boundary values of key strata with three point boundaries and one fixed boundary is greater than that with four fixed boundaries.Considering the rheology of key strata under low stress conditions,we selected a generalized Kelvin model to analyse the rheology characteristics of the key strata and discovered their instantaneous elastic phases.The rate of deformation decreased over time to the point where the key strata reached stability.But over this time,the effect on deformation became very clear. For high stress conditions,we chose a Burgers model and found deformation of key strata in the form of attenuation and steady-state creep and although the rate of deformation remained constant,secondary creep was obvious,causing instability in the system.As well,we analysed the effect of creep buckling and derived a relation between buckling force and time.
文摘The present paper deals with both the steady-state and dynamic simulation of a plate heat exchanger, in counter-flow arrangement. A CFD (computational fluid dynamics) program FLUENT has been used to predict the temperature distribution in steady-state conditions in plate heat exchanger as well as fluid temperatures at exit of flow channels in transient condition. The results are presented for the heat exchanger, which is simulated according to the configuration of the plate heat exchanger used in the experiment. The simulated results obtained by the CFD model have been compared with the experimental data from the literature, which shows that the CFD model developed in this study is capable of predicting the steady-state and transient performance of the plate heat exchangers satisfactorily.
基金sponsored by the National Natural Science Foundation of China (Grant No. 91016001)
文摘Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generated near the junction of the strake and wing,which then moved towards the wing tip at certain wavelength and speed.Analyses were made in detail on the mechanism of the generation of the cross-flow vortex,that is,the inviscid cross-flow instability which differs from that of the swept blunt wing.Cross-section topology of the cross-flow vortex is also investigated,and the wavelength of the vortex array and the characteristic frequency are given.The analyses showed that the cross-flow vortices have an influence on the pressure distribution,which can cause a 10%-20% deviation from the averaged distribution.
基金supported by the National Natural Science Foundation of China (Grant No. 11102131)the National Basic Research Program of China (Grant No. 2009CB724103)+1 种基金the National Aeronautics Basic Science Foundation of China (Grant No. 2010ZA48002)the Doctoral fund of Ministry of Education of China (Grant No. 20110032120003)
文摘The scenario of bypass transition is generally described theoretically as follows: low-frequency disturbances in the free-stream would generate long stream-wise streaks in the boundary layer, which later would induce secondary instability, leading to rapid increase of high-frequency disturbances, then possibly turbulent spots would emerge, and through their merging, fully developed turbulence appears. This description, however, is insufficient in the sense that it does not provide the explanation on why during the breakdown stage, a large number of waves with different frequencies and wave numbers would appear almost simultaneously, leading to a swift change of the mean flow profile. In this paper, the mechanism leading to this phenomenon is found to be the change of the stability characteristics of mean flow profile, which has a positive feedback effect on the change of the profile itself. And another interesting finding is that, during the transition, the unstable disturbance waves which appear first belong to a branch of inviscid modes, while following the change of the stability characteristics of the mean flow profile, the disturbance waves will change to another branch of inviscid modes, and the latter play the key role in bypass transition.
基金supported by China National Basic Research Program (973 Program),Project No.2007 CB 210107
文摘The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes (RANS) equations with k-co turbulence model. The first stage of GE-E3 engine with squealer tip in the rotor was adopted to perform this work. The tip clearance was set to be 1% of the rotor blade height and the groove depth was specified as 2% of the span. The results showed that there were two vortexes in the tip gap which determined the local heat transfer characteristics. In the steady flow field, the high heat transfer coefficient existed at several positions. In the unsteady case, the flow field in the squealer tip was mainly influenced by the upstream wake and the interaction of the blades potential fields. These unsteady effects induced the periodic variation of the leakage flow and the vortexes, which resulted in the fluctuation of the heat transfer coefficient. The largest fluctuation of the heat transfer coefficient on the surface of the groove bottom exceeded 16% of the averaged value on the surface of the squealer tip.
文摘Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equivalent to a uniform rotating motion which can be analyzed by using the stream surface theory of turbomachinery during a micro period of time. In this article, the N-S equations of the motion are expanded in a non-orthogonal curvilinear coordinate system, and simplified on stream surfaces of the flapping flight model. By using stream function me- thod, the three-dimensional unsteady flow equations are simplified as a two-order partial differential equation with variable coefficients eventually and the equation's iterative solving method on S1 and $2 stream surfaces of the flapping flight model is presented. Through expanding the relatively steady equations of flapping flight at an arbitrary time point of a stroke on meridional plane of the flapping flight model, it can use a relatively steady mo- tion to approximate the real flapping flight at that time point, and analyze the flow stability influenced by the wing's flexibility. It can be seen that the wing flexibility is related to the higher pressurization capacity and the flow stability, and the pressurization capacity of flexible wing is proportional to the angular speed, angular distor- tion rate and radius square.
基金supported by National Natural Science Foundation of China(No.90816028)National Science Fund for Distinguished Young Scholars of China(No.50925625)
文摘A newly designed strut is proposed in this paper for fuel injection and flame holding in a liquid-kerosene-fueled supersonic combustor. The thickness of the strut is 8ram and the front blockage is about 8%. The characteristic of this strut is that extra oxygen can be injected through a set of orifices at the back of the strut, which can change the local flow field structure and ER (Equivalence Ratio). Based on the above mentioned strut, a stable local flame is generated at the back of the strut and the main combustion can be organized around this local fire. Nu- merical simulation is conducted to compare the local flow field distribution at the back of the strut with/without extra oxygen injection. Experiments are conducted to test the combustion characteristics based on this fuel injec- tion and flame holding strategy. The temperature distribution which can reflect the local flame characteristic has been measured in the experiments conducted under cold incoming supersonic air flow condition. In addition, the overall combustion performance in a full-scale supersonic combustor has been evaluated in the experiments con- ducted under hot incoming supersonic air flow condition. Results show that this strut strategy is very promising since it can organize stable supersonic combustion at the center of the combustor without any cavity or rearward facing step. Besides that, even with the 8ram thick strut, the combustion can be stable in a wide range of ER from 0.25-1 by using liquid room-temperature kerosene.
基金supported by the National Natural Science Foundation of China (Grant No. 50475011)
文摘The theory of limit cycles was applied to hydraulic hybrid vehicle (HHV) to analyze the dynamic characteristics of the system. The exact mathematical models based on configuration diagram of HHV were built to study on equilibrium points, nonexistence of limit cycle and stability of equilibrium points. The analysis showed that if the Young's modulus of fluid is neglected, the equilibrium points of the system will be distributed on both sides of the initial function. In addition, there is a unique equilibrium point according to the practical signification of the system parameters. The nonexistence analysis showed that there is no limit cycle for the system, no matter how the viscosity coefficient B changes. The stability analysis of equilibrium points showed that the system is asymptotically stable about the equilibrium point at B≥0 and the equilibrium point is the center point of the system at B=0. Finally, the phase diagrams of global topological structure of HHV system were entirely described according to qualitative analysis of the singular points at infinity.
文摘In this paper, we investigate the spatiotemporal dynamics of a reactio^diffusion epi- demic model with zero-flux boundary conditions. The value of our study lies in two aspects: mathematically, by using maximum principle and the linearized stability theory, a priori estimates of the steady state system and the local asymptotic stability of positive constant solution are given. By using the implicit function theorem, the exis- tence and nonexistence of nonconstant positive steady states are shown. Applying the bifurcation theory, the global bifurcation structure of nonconstant positive steady states is established. Epidemiologically, through numerical simulations, under the conditions of the existence of nonconstant positive steady states, we find that the smaller the space, the easier the pattern formation; the bigger the diffusion, the easier the pattern formation. These results are beneficial to disease control, that is, we must do our best to control the diffusion of the infectious to avoid disease outbreak.