The design and development of a timer based revolution per minute(RPM)measurement system were described in this paper.The rotating shaft of a dc motor was used to measure the RPM and timer integrated circuit(IC)555 wa...The design and development of a timer based revolution per minute(RPM)measurement system were described in this paper.The rotating shaft of a dc motor was used to measure the RPM and timer integrated circuit(IC)555 was used in astable mode.The frequency of timer output waveform measured by a digital storage oscilloscope(DSO)is almost linearly proportional to the RPM of rotating shaft,and the RPM also linearly varies with the change of the external input voltage level.Hence the linear relationship between the frequency of timer output waveform and the RPM can be obtained.The main advantages of this developed system are linear input-output relationship,small size,easy to carry and cost effective.展开更多
Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the...Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the second generator by errors in the rotor rotating speed calculation are found,and the tuning method of the speed related parameters are given.The damping and reverse tuning characteristics of power system stabilizers(PSSs)in the digital automatic voltage regulator(AVR)are compared and investigated in the frequency range of 0.18-1.1 Hz.The efficiency of the proposed tuning method for ensuring power system stability is verified by RTDS.Finally,field tests show the validity of the laboratory test results.展开更多
Improving rollover and stability of the vehicles is the indispensable part of automotive research to prevent vehicle rollover and crashes.The main objective of this work is to develop active control mechanism based on...Improving rollover and stability of the vehicles is the indispensable part of automotive research to prevent vehicle rollover and crashes.The main objective of this work is to develop active control mechanism based on fuzzy logic controller(FLC) and linear quadratic regulator(LQR) for improving vehicle path following,roll and handling performances simultaneously.3-DOF vehicle model including yaw rate,lateral velocity(lateral dynamic) and roll angle(roll dynamic) were developed.The controller produces optimal moment to increase stability and roll margin of vehicle by receiving the steering angle as an input and vehicle variables as a feedback signal.The effectiveness of proposed controller and vehicle model were evaluated during fishhook and single lane-change maneuvers.Simulation results demonstrate that in both cases(FLC and LQR controllers) by reducing roll angle,lateral acceleration and side slip angles remain under 0.6g and 4° during maneuver,which ensures vehicle stability and handling properties.Finally,the sensitivity and robustness analysis of developed controller for varying longitudinal speeds were investigated.展开更多
The configurations of near space hypersonic flying vehicles are considerably different from those of conventional aircrafts.Their configurations are relatively slender;hence their moment of inertia around the longitud...The configurations of near space hypersonic flying vehicles are considerably different from those of conventional aircrafts.Their configurations are relatively slender;hence their moment of inertia around the longitudinal axis is much smaller than those around the other two axes,resulting in strong coupling of rotations around the three axes.Thus,the stability analysis of rolling motion for such flying vehicles is more complicated than those for conventional aircrafts,and there is no available result of stability analysis which can readily be applied to such cases.This paper is mainly concerned with the stated problem.Considering the practical situation,our investigation is targeted a slightly simpler problem,namely the rolling stability of flying vehicle under known pitching motion.The stability criterion of rolling motion is obtained with and without lateral motions.We also conducted numerical simulation for the pitching-rolling coupled motions of flying vehicles by solving Navier-Stokes equations coupled with dynamic equations of flight.The results of simulation agree well with those of theoretical analysis and experiments.展开更多
Cavitation has a significant influence on the accurate control of the liquid filling rate and braking performance of a hydraulic retarder;however,previous studies of the flow field in hydraulic retarders have provided...Cavitation has a significant influence on the accurate control of the liquid filling rate and braking performance of a hydraulic retarder;however,previous studies of the flow field in hydraulic retarders have provided insufficient information in terms of considering cavitation.Here,the volume of fluid(VOF)method and a scale-resolving simulation(SRS)were employed to numerically and more comprehensively calculate and analyze the flow field in a retarder considering the cavitation phenomenon.The numerical models included the improved delayed detached eddy simulation(IDDES)model,stress-blended eddy simulation(SBES)model,dynamic large eddy simulation(DLES)model,and shear stress transport(SST)model in the Reynolds-averaged Navier-Stokes(RANS)model.All the calculations were typically validated by the brake torque in the impeller rather than the internal flow.The unsteady flow field indicated that the SBES and DLES models could better capture unsteady flow phenomena,such as the chord vortex.The SBES and DLES models could also better capture bubbles than the SST and IDDES models.Since the braking torque error of the SBES model was the smallest,the transient variation of the bubble volume fraction over time on a typical flow surface was analyzed in detail with the SBES model.It was found that bubbles mainly appeared in the center area of the blade suction surface,which coincided with the experiments.The accumulation of bubbles resulted in a larger bubble volume fraction in the center of the blade over time.In addition,the temperature variations of the pressure blade caused by heat transfer were further analyzed.More bubbles precipitated in the center of the blade,leading to a lower temperature in this area.展开更多
The stability of the rolling motion of near space hypersonic vehicles with rudder control is studied using method of qualitative analysis of nonlinear differential equations, and the stability criteria of the deflecte...The stability of the rolling motion of near space hypersonic vehicles with rudder control is studied using method of qualitative analysis of nonlinear differential equations, and the stability criteria of the deflected rolling motions are improved. The out- comes can serve as the basis for further study regarding the influence of pitching and lateral motion on the stability of rolling motion. To validate the theoretical results, numerical simulations were do^e for the rolling motion of two hypersonic vehicles with typical configurations. Also, wind tunnel experiments for four aircraft models with typical configurations have been done. The results show that: 1) there exist two dynamic patterns of the rolling motion under statically stable condition. The first one is point attractor, for which the motion of aircraft returns to the original state. The second is periodic attractor, for which the aircraft rolls periodically. 2) Under statically unstable condition, there exist three dynamic patterns of rolling motion, namely, the point attractor, periodic attractor around deflected state of rolling motion, and double periodic attractors or chaotic attrac- tors.展开更多
The global adaptive set stabilization problem of the attitude of a rigid spacecraft is addressed in this paper. Two different cases are considered. First, by using adaptive backstepping method, the authors design a gl...The global adaptive set stabilization problem of the attitude of a rigid spacecraft is addressed in this paper. Two different cases are considered. First, by using adaptive backstepping method, the authors design a global adaptive control law for the attitude control system with unknown inertia matrix such that the attitude and the angular velocities can be globally asymptotically stabilized to a set consisting of two equilibria. And then, based on the obtained backstepping adaptive law, the authors consider the case that the angular velocities are not measurable. By introducing an auxiliary state, a semi-global adaptive set stabilization law without angular velocity measurements is also designed. It is rigorously proved that, for the two cases, both of the closed loop systems satisfy the set stability. The effectiveness of the proposed methods is verified by simulation results.展开更多
The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge(i.e., the leading-edge vortex(LEV)) in a centrifugal compressor were investigate...The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge(i.e., the leading-edge vortex(LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading-edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.展开更多
文摘The design and development of a timer based revolution per minute(RPM)measurement system were described in this paper.The rotating shaft of a dc motor was used to measure the RPM and timer integrated circuit(IC)555 was used in astable mode.The frequency of timer output waveform measured by a digital storage oscilloscope(DSO)is almost linearly proportional to the RPM of rotating shaft,and the RPM also linearly varies with the change of the external input voltage level.Hence the linear relationship between the frequency of timer output waveform and the RPM can be obtained.The main advantages of this developed system are linear input-output relationship,small size,easy to carry and cost effective.
文摘Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the second generator by errors in the rotor rotating speed calculation are found,and the tuning method of the speed related parameters are given.The damping and reverse tuning characteristics of power system stabilizers(PSSs)in the digital automatic voltage regulator(AVR)are compared and investigated in the frequency range of 0.18-1.1 Hz.The efficiency of the proposed tuning method for ensuring power system stability is verified by RTDS.Finally,field tests show the validity of the laboratory test results.
文摘Improving rollover and stability of the vehicles is the indispensable part of automotive research to prevent vehicle rollover and crashes.The main objective of this work is to develop active control mechanism based on fuzzy logic controller(FLC) and linear quadratic regulator(LQR) for improving vehicle path following,roll and handling performances simultaneously.3-DOF vehicle model including yaw rate,lateral velocity(lateral dynamic) and roll angle(roll dynamic) were developed.The controller produces optimal moment to increase stability and roll margin of vehicle by receiving the steering angle as an input and vehicle variables as a feedback signal.The effectiveness of proposed controller and vehicle model were evaluated during fishhook and single lane-change maneuvers.Simulation results demonstrate that in both cases(FLC and LQR controllers) by reducing roll angle,lateral acceleration and side slip angles remain under 0.6g and 4° during maneuver,which ensures vehicle stability and handling properties.Finally,the sensitivity and robustness analysis of developed controller for varying longitudinal speeds were investigated.
基金supported by the National Natural Science Foundation of China(Grant Nos.91216203 and 91216304)
文摘The configurations of near space hypersonic flying vehicles are considerably different from those of conventional aircrafts.Their configurations are relatively slender;hence their moment of inertia around the longitudinal axis is much smaller than those around the other two axes,resulting in strong coupling of rotations around the three axes.Thus,the stability analysis of rolling motion for such flying vehicles is more complicated than those for conventional aircrafts,and there is no available result of stability analysis which can readily be applied to such cases.This paper is mainly concerned with the stated problem.Considering the practical situation,our investigation is targeted a slightly simpler problem,namely the rolling stability of flying vehicle under known pitching motion.The stability criterion of rolling motion is obtained with and without lateral motions.We also conducted numerical simulation for the pitching-rolling coupled motions of flying vehicles by solving Navier-Stokes equations coupled with dynamic equations of flight.The results of simulation agree well with those of theoretical analysis and experiments.
基金Project supported by the Key Scientific and Technological Project of Jilin Province(No.20170204066GX)the Natural Science Foundation of Jilin Province(No.20200201222JC)+2 种基金the Science and Technology Project of Jilin Provincial Education Department(No.JJKH20170785KJ)the Project of Jilin Provincial Science&Technology Department(No.20200301011RQ)the Advanced Manufacturing Projects of Government and University Co-construction Program funded by Jilin Province(No.SXGJSF2017-2),China。
文摘Cavitation has a significant influence on the accurate control of the liquid filling rate and braking performance of a hydraulic retarder;however,previous studies of the flow field in hydraulic retarders have provided insufficient information in terms of considering cavitation.Here,the volume of fluid(VOF)method and a scale-resolving simulation(SRS)were employed to numerically and more comprehensively calculate and analyze the flow field in a retarder considering the cavitation phenomenon.The numerical models included the improved delayed detached eddy simulation(IDDES)model,stress-blended eddy simulation(SBES)model,dynamic large eddy simulation(DLES)model,and shear stress transport(SST)model in the Reynolds-averaged Navier-Stokes(RANS)model.All the calculations were typically validated by the brake torque in the impeller rather than the internal flow.The unsteady flow field indicated that the SBES and DLES models could better capture unsteady flow phenomena,such as the chord vortex.The SBES and DLES models could also better capture bubbles than the SST and IDDES models.Since the braking torque error of the SBES model was the smallest,the transient variation of the bubble volume fraction over time on a typical flow surface was analyzed in detail with the SBES model.It was found that bubbles mainly appeared in the center area of the blade suction surface,which coincided with the experiments.The accumulation of bubbles resulted in a larger bubble volume fraction in the center of the blade over time.In addition,the temperature variations of the pressure blade caused by heat transfer were further analyzed.More bubbles precipitated in the center of the blade,leading to a lower temperature in this area.
基金supported by the National Natural Science Foundation of China(Grant Nos.91216203 and 91216304)
文摘The stability of the rolling motion of near space hypersonic vehicles with rudder control is studied using method of qualitative analysis of nonlinear differential equations, and the stability criteria of the deflected rolling motions are improved. The out- comes can serve as the basis for further study regarding the influence of pitching and lateral motion on the stability of rolling motion. To validate the theoretical results, numerical simulations were do^e for the rolling motion of two hypersonic vehicles with typical configurations. Also, wind tunnel experiments for four aircraft models with typical configurations have been done. The results show that: 1) there exist two dynamic patterns of the rolling motion under statically stable condition. The first one is point attractor, for which the motion of aircraft returns to the original state. The second is periodic attractor, for which the aircraft rolls periodically. 2) Under statically unstable condition, there exist three dynamic patterns of rolling motion, namely, the point attractor, periodic attractor around deflected state of rolling motion, and double periodic attractors or chaotic attrac- tors.
基金This research is supported by the National Nature Science Foundation of China under Grant Nos. 60504007 and 61074013, Open Foundation of Key Laboratory of Micro-Inertial Instruments and Navigation Technology, Ministry of Education under Grant No. 201004, Initial Research Fund of Highly Specialized Personnel from Jiangsu University under Grant No. 10JDGll2, and 973 Sub-project under Grant No. 2009CB724002.
文摘The global adaptive set stabilization problem of the attitude of a rigid spacecraft is addressed in this paper. Two different cases are considered. First, by using adaptive backstepping method, the authors design a global adaptive control law for the attitude control system with unknown inertia matrix such that the attitude and the angular velocities can be globally asymptotically stabilized to a set consisting of two equilibria. And then, based on the obtained backstepping adaptive law, the authors consider the case that the angular velocities are not measurable. By introducing an auxiliary state, a semi-global adaptive set stabilization law without angular velocity measurements is also designed. It is rigorously proved that, for the two cases, both of the closed loop systems satisfy the set stability. The effectiveness of the proposed methods is verified by simulation results.
文摘The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge(i.e., the leading-edge vortex(LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading-edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.