The effects of individual and combined additions of urea (100 μg N g-1 soil) and insecticide (triazophos at field rate, FR) under different moisture levels of air-dried soil (AD), 50% of water-holding capacity (WHC),...The effects of individual and combined additions of urea (100 μg N g-1 soil) and insecticide (triazophos at field rate, FR) under different moisture levels of air-dried soil (AD), 50% of water-holding capacity (WHC), 100% WHC and flooded soil (FS) on some selected soil properties in a paddy field soil were examined in a laboratory incubation study. The results indicated that after 21-day incubation at 25℃, the different moisture levels led to significant changes in the parameters studied. Flooding of soil with distilled water significantly increased the electron transport system (ETS) /dehydrogenase activity and phenol contents of the soil compared to the other moisture levels, while protein and phospholipids behaved differently at varied moisture levels with or without the addition of urea and/or triazophos. Increased ETS activity was observed with N addition at higher moisture levels while insecticide incorporation decreased it at all moisture levels as compared to the control (moisture only). The phenol contents slightly decreased and increased with N and insecticide applications, respectively. The soil protein contents were found to be unaffected among all the soil treatments at all moisture levels. However, among different moisture levels, reduced quantities of proteins were estimated at 50% WHC, suggesting more N-mineralization. Lower quantities of soil biomass phospholipids, among all treatments, were recorded at higher moisture levels (100% WHC and FS) than at the lower levels. An overall slight enhancement in phospholipid contents with N and small reduction with insecticide addition, respectively, was noticed against the untreated soil. The toxicity of fertilizer and insecticide decreased as the soil moisture contents increased, suggesting rapid degradation of agrochemicals.展开更多
A four-year(2008–2011) field study was implemented in a major rice-growing region of China to better understand the effect of urea and controlled release fertilier(CRF, thermoplastic resin-coated urea in this study) ...A four-year(2008–2011) field study was implemented in a major rice-growing region of China to better understand the effect of urea and controlled release fertilier(CRF, thermoplastic resin-coated urea in this study) on CH4 emission from paddy fields. Over the four years, the average CH4 emission during the rice growing seasons was 76.9, 65.8 and 64.9 kg CH4ha-1in treatments CK(zero N), U(urea) and C(CRF), respectively. Urea and CRF significantly reduced CH4 emission by 14.4% and 15.6%, and increased average rice grain yield by 25.8% and 19.7%(P < 0.05), respectively, compared with treatment CK. Flooding duration would affect CRF's effect on CH4 emission from paddy fields. Under normal aeration conditions, CH4 emission tended to be 3.9%–15.2% lower in treatment C than in treatment U from 2009 to 2011, while it tended to be 4.2% higher under delayed aeration conditions in 2008. The findings suggest that mid-season aeration(MSA) starting on D30(30 days after rice transplanting), just like the local practice, would optimize the CRF's effect on CH4 emission from rice fields in China. Over the four years, average rice yield did not differ between treatments U and C, and tended to be 5% lower in treatment C than in treatment U.展开更多
基金supported by the International Rice Research Institute (IRRI) under project of Reversing Trends of Declining Productivity (RTDP
文摘The effects of individual and combined additions of urea (100 μg N g-1 soil) and insecticide (triazophos at field rate, FR) under different moisture levels of air-dried soil (AD), 50% of water-holding capacity (WHC), 100% WHC and flooded soil (FS) on some selected soil properties in a paddy field soil were examined in a laboratory incubation study. The results indicated that after 21-day incubation at 25℃, the different moisture levels led to significant changes in the parameters studied. Flooding of soil with distilled water significantly increased the electron transport system (ETS) /dehydrogenase activity and phenol contents of the soil compared to the other moisture levels, while protein and phospholipids behaved differently at varied moisture levels with or without the addition of urea and/or triazophos. Increased ETS activity was observed with N addition at higher moisture levels while insecticide incorporation decreased it at all moisture levels as compared to the control (moisture only). The phenol contents slightly decreased and increased with N and insecticide applications, respectively. The soil protein contents were found to be unaffected among all the soil treatments at all moisture levels. However, among different moisture levels, reduced quantities of proteins were estimated at 50% WHC, suggesting more N-mineralization. Lower quantities of soil biomass phospholipids, among all treatments, were recorded at higher moisture levels (100% WHC and FS) than at the lower levels. An overall slight enhancement in phospholipid contents with N and small reduction with insecticide addition, respectively, was noticed against the untreated soil. The toxicity of fertilizer and insecticide decreased as the soil moisture contents increased, suggesting rapid degradation of agrochemicals.
基金Supported by the Key Program for International S&T Cooperation Projects of China(No.2012DFG90290)the Non-Profit Research Foundation for Agriculture,China(No.201103039)+1 种基金the National Natural Science Foundation of China(Nos.41271259 and 412012433)the Research Fund of State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences(No.Y412201414)
文摘A four-year(2008–2011) field study was implemented in a major rice-growing region of China to better understand the effect of urea and controlled release fertilier(CRF, thermoplastic resin-coated urea in this study) on CH4 emission from paddy fields. Over the four years, the average CH4 emission during the rice growing seasons was 76.9, 65.8 and 64.9 kg CH4ha-1in treatments CK(zero N), U(urea) and C(CRF), respectively. Urea and CRF significantly reduced CH4 emission by 14.4% and 15.6%, and increased average rice grain yield by 25.8% and 19.7%(P < 0.05), respectively, compared with treatment CK. Flooding duration would affect CRF's effect on CH4 emission from paddy fields. Under normal aeration conditions, CH4 emission tended to be 3.9%–15.2% lower in treatment C than in treatment U from 2009 to 2011, while it tended to be 4.2% higher under delayed aeration conditions in 2008. The findings suggest that mid-season aeration(MSA) starting on D30(30 days after rice transplanting), just like the local practice, would optimize the CRF's effect on CH4 emission from rice fields in China. Over the four years, average rice yield did not differ between treatments U and C, and tended to be 5% lower in treatment C than in treatment U.