Using early indica rice Zhongzao 39 and japonica rice Xiushui 134 as the experimental materials, the effects of 4 temperature levels after transplantation on turning green, leaf growth, tillering, dry matter accumulat...Using early indica rice Zhongzao 39 and japonica rice Xiushui 134 as the experimental materials, the effects of 4 temperature levels after transplantation on turning green, leaf growth, tillering, dry matter accumulation and nutrition absorption were studied using a greenhouse and an artificial climate chest. We found that (1) tillering did not occur and growth of one new leaf took over 15 days at 16℃. New leaf growth took over 10 days and tillering occurred after 15 days of transplanta- tion at 19 ℃. Tillering appeared 10 days after planting and new leaf growth took 5 days between 22 and 25 ℃. This showed that low temperature impeded the turn- ing green of rice seedlings and the temperature must reach above 19 ℃ to ensure timely appearance of new leaf, tillering and turning green in rice seedlings. (2) When the temperature was 10 increased, both 100-seedling dry weight and nitrogen absorption increased. At temperatures lower 11 than 19 ℃, both dry weight incre- ment and nitrogen absorption were low. Nitrogen absorption of all organs increased obviously between 19 and 22 ℃. Thus, 19 ℃ was found to be an minimum tem- perature for plant organs to absorb nutrients. (3)Tiller of seedling cultivated on dry- land soil and substrate grew quickly and tillering occurred about 7 days after trans- planting. After that, the growth rate was about 0.18 tiller per day. For seedlings cultivated in slurry, tillering occurred 10 days after transplanting and the tillers grew at a rate of 0.16 tiller per day. However, substrate choice during the seedling rais- ing stage had no significant influence on leaf age. (4) Japonica rice exhibited stronger resistance to low temperature than indica rice. Tillering began at about the same time after transplanting in both rice varieties, but japonica rice exhibited higher tillering speed than early indica rice. The speed of leaf growth was higher in japoni- ca rice before transplantation but higher in indica rice after transplantation.展开更多
In this study, wild rice chromosome segment substitution lines bred by Yuanjiang common wild rice and elite indica rice variety Teqing were used as ex-perimental materials to detect aluminum tolerancerelated QTLs base...In this study, wild rice chromosome segment substitution lines bred by Yuanjiang common wild rice and elite indica rice variety Teqing were used as ex-perimental materials to detect aluminum tolerancerelated QTLs based on the phe-notypic data of indoor and outdoor plant height inhibition rate and dry weight inhibi-tion rate at seedling stage. According to experimental results, 11, 18, 14 and 5 QTLs related with aluminum tolerance were detected respectively on different chro-mosomes. Analysis of phenotypic data of indoor and outdoor plant height inhibition rate indicated that QTLs around RM38 on chromosome 8 and RM277 chromosome 12 exhibited the highest contribution rates (12% and 11%), belonging to major QTLs. Analysis of phenotypic data of indoor and outdoor dry weight inhibition rate indicated that the highest contribution rate was only 9% and 8%; therefore, no major QTL was detected. QTLs detected repeatedly were located on chromosomes 7, 8, 9, 11 and 12, respectively. Two QTLs were located on chromosome 8. QTLs around RM310 were detected three times and other QTLs were detected twice, which were identified as stable QTLs.展开更多
基金Supported by Special Scientific Research Funds for Commonweal Section(Agriculture)(201203029,201003016)China Rice Industry System Project(2011-2015)Special Funding for Basic Scientific Research and Zhejiang Provincial Natural Science Foundation(LY13C130004)~~
文摘Using early indica rice Zhongzao 39 and japonica rice Xiushui 134 as the experimental materials, the effects of 4 temperature levels after transplantation on turning green, leaf growth, tillering, dry matter accumulation and nutrition absorption were studied using a greenhouse and an artificial climate chest. We found that (1) tillering did not occur and growth of one new leaf took over 15 days at 16℃. New leaf growth took over 10 days and tillering occurred after 15 days of transplanta- tion at 19 ℃. Tillering appeared 10 days after planting and new leaf growth took 5 days between 22 and 25 ℃. This showed that low temperature impeded the turn- ing green of rice seedlings and the temperature must reach above 19 ℃ to ensure timely appearance of new leaf, tillering and turning green in rice seedlings. (2) When the temperature was 10 increased, both 100-seedling dry weight and nitrogen absorption increased. At temperatures lower 11 than 19 ℃, both dry weight incre- ment and nitrogen absorption were low. Nitrogen absorption of all organs increased obviously between 19 and 22 ℃. Thus, 19 ℃ was found to be an minimum tem- perature for plant organs to absorb nutrients. (3)Tiller of seedling cultivated on dry- land soil and substrate grew quickly and tillering occurred about 7 days after trans- planting. After that, the growth rate was about 0.18 tiller per day. For seedlings cultivated in slurry, tillering occurred 10 days after transplanting and the tillers grew at a rate of 0.16 tiller per day. However, substrate choice during the seedling rais- ing stage had no significant influence on leaf age. (4) Japonica rice exhibited stronger resistance to low temperature than indica rice. Tillering began at about the same time after transplanting in both rice varieties, but japonica rice exhibited higher tillering speed than early indica rice. The speed of leaf growth was higher in japoni- ca rice before transplantation but higher in indica rice after transplantation.
基金Supported by National Natural Science Foundation of China(30771340,30771156,31071412)~~
文摘In this study, wild rice chromosome segment substitution lines bred by Yuanjiang common wild rice and elite indica rice variety Teqing were used as ex-perimental materials to detect aluminum tolerancerelated QTLs based on the phe-notypic data of indoor and outdoor plant height inhibition rate and dry weight inhibi-tion rate at seedling stage. According to experimental results, 11, 18, 14 and 5 QTLs related with aluminum tolerance were detected respectively on different chro-mosomes. Analysis of phenotypic data of indoor and outdoor plant height inhibition rate indicated that QTLs around RM38 on chromosome 8 and RM277 chromosome 12 exhibited the highest contribution rates (12% and 11%), belonging to major QTLs. Analysis of phenotypic data of indoor and outdoor dry weight inhibition rate indicated that the highest contribution rate was only 9% and 8%; therefore, no major QTL was detected. QTLs detected repeatedly were located on chromosomes 7, 8, 9, 11 and 12, respectively. Two QTLs were located on chromosome 8. QTLs around RM310 were detected three times and other QTLs were detected twice, which were identified as stable QTLs.