[Objective]The paper was to explore the effect of postponing application of N fertilizer on source-sink characteristics of super hybrid rice Ganxin688.[Method] With super hybrid rice Ganxin688 as test material,the sou...[Objective]The paper was to explore the effect of postponing application of N fertilizer on source-sink characteristics of super hybrid rice Ganxin688.[Method] With super hybrid rice Ganxin688 as test material,the source organ traits(leaf area index,leaf weight,chlorophyll content,photosynthetic rate of flag leaf,stem and sheath dry matter accumulation and output) and yield were measured,the effects of nitrogen application on source-sink relationship,yield and N fertilizer use efficiency were also studied.[Result] Appropriate postponing of N fertilizer was benefit for optimizing population quality,harmonizing source-sink relation,enhancing leaf function,prolonging leaf function period and increasing N fertilizer use efficiency.After heading,the leaves area index(LAI) and chlorophyll content increased with the increasing application amount of panicle fertilizer,and their reduction rate slowed down with the increased application amount of panicle fertilizer.Appropriate increased application of panicle fertilizer could prolong the function period of leaves in lower position,increase storage amount of stem and sheath matter,total sink capacity and sink capacity per unit leaf area during heading stage,improve panicle rate and seed setting rate,reduce the demand of grain sink on stem and sheath matter,and increase lodging resistance of plant,which could also increase dry matter productivity and rice productivity of N fertilizer,and increase absorption and application ratio and total accumulation amount of N fertilizer.For Ganxin 688,when N application amount was 175-205 kg/hm2,the proportion of panicle fertilizer in total nitrogen application should be better as 40%-45%.[Conclusion] The study provided basis for making reasonable and efficient N application strategy to establish a coordinated huge sink and strong source relationship for super rice.展开更多
Elite maintainer lines and restorer lines have been developed by genomic DNA transformation,Analyses of molecular markers, DNA sequences, and Southern blotting have revealed that high DNA polymorphism exists between n...Elite maintainer lines and restorer lines have been developed by genomic DNA transformation,Analyses of molecular markers, DNA sequences, and Southern blotting have revealed that high DNA polymorphism exists between new developed lines and its receptors, indicating that the special DNA fragment from distant relatives may be integrated into the genome of rice. And several combinations with the potential of super-high yield have been developed from these lines. Therefore, transformation of genomic DNA from distant relatives to the plant of a target receptor may open an avenue for breeding of super-hybrid rice.展开更多
Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (R...Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (T aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.展开更多
基金Supported by National"Eleventh Five-Year"Technology Support Program(2006BAD02A04)Special Project of Ministry of Agriculture for Super Rice"Development and Technology Integration of Cultivation Techniques for Super Rice"~~
文摘[Objective]The paper was to explore the effect of postponing application of N fertilizer on source-sink characteristics of super hybrid rice Ganxin688.[Method] With super hybrid rice Ganxin688 as test material,the source organ traits(leaf area index,leaf weight,chlorophyll content,photosynthetic rate of flag leaf,stem and sheath dry matter accumulation and output) and yield were measured,the effects of nitrogen application on source-sink relationship,yield and N fertilizer use efficiency were also studied.[Result] Appropriate postponing of N fertilizer was benefit for optimizing population quality,harmonizing source-sink relation,enhancing leaf function,prolonging leaf function period and increasing N fertilizer use efficiency.After heading,the leaves area index(LAI) and chlorophyll content increased with the increasing application amount of panicle fertilizer,and their reduction rate slowed down with the increased application amount of panicle fertilizer.Appropriate increased application of panicle fertilizer could prolong the function period of leaves in lower position,increase storage amount of stem and sheath matter,total sink capacity and sink capacity per unit leaf area during heading stage,improve panicle rate and seed setting rate,reduce the demand of grain sink on stem and sheath matter,and increase lodging resistance of plant,which could also increase dry matter productivity and rice productivity of N fertilizer,and increase absorption and application ratio and total accumulation amount of N fertilizer.For Ganxin 688,when N application amount was 175-205 kg/hm2,the proportion of panicle fertilizer in total nitrogen application should be better as 40%-45%.[Conclusion] The study provided basis for making reasonable and efficient N application strategy to establish a coordinated huge sink and strong source relationship for super rice.
文摘Elite maintainer lines and restorer lines have been developed by genomic DNA transformation,Analyses of molecular markers, DNA sequences, and Southern blotting have revealed that high DNA polymorphism exists between new developed lines and its receptors, indicating that the special DNA fragment from distant relatives may be integrated into the genome of rice. And several combinations with the potential of super-high yield have been developed from these lines. Therefore, transformation of genomic DNA from distant relatives to the plant of a target receptor may open an avenue for breeding of super-hybrid rice.
文摘Alien chromosomes of twelve giant spike wheat germplasm lines were identified by C-banding, genomic in situ hybridization (GISH), sequence characterized amplified region (SCAR), and random amplified polymorphic DNA (RAPD). All lines showed a chromosome number of 2n = 42, five of them carried both a pair of wheat-rye (Triticum aestivum-Secale cereal) 1BL/1RS translocation chromosomes and a pair of Agropyron intermedium (Ai) chromosomes, three carried a pair of Ai chromosomes only, three others carried a pair of 1BL/1RS chromosomes only, and one carried neither 1BL/1BS nor Ai chromosome. Further identification revealed that the identical Ai chromosome in these germplasm lines substituted the chromosome 2D of common wheat (T aestivum L.), designated as 2Ai. The genetic implication and further utilization of 2Ai in wheat improvement were also discussed.