期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多尺度时空信息的空中交通流智能预测技术
1
作者 汤闻易 吴聪 +1 位作者 丁辉 王涛 《指挥信息系统与技术》 2024年第5期21-28,共8页
为解决空中交通流预测中的时空复杂性问题,提出了一种基于多尺度时空视角的空中交通流智能预测方法。针对空中交通网络中的非规则空间关系和超长时间序列中的周期性和趋势性特征进行了建模,通过构建图卷积层和堆叠的扩张因果卷积层,捕... 为解决空中交通流预测中的时空复杂性问题,提出了一种基于多尺度时空视角的空中交通流智能预测方法。针对空中交通网络中的非规则空间关系和超长时间序列中的周期性和趋势性特征进行了建模,通过构建图卷积层和堆叠的扩张因果卷积层,捕捉空中交通流的多维关联性,并提供对未来时刻交通流的精准预测。试验结果表明,该方法在多个航空网络数据集上的预测精度高于传统方法,具有实际应用价值,可为空中交通管理管系统智能决策提供参考。 展开更多
关键词 空中交通流预测 多尺度时空信息 图表示学习 图卷积网络
下载PDF
Terminal Traffic Flow Prediction Method Under Convective Weather Using Deep Learning Approaches 被引量:3
2
作者 PENG Ying WANG Hong +1 位作者 MAO Limin WANG Peng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期634-645,共12页
In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set o... In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set of weather characteristics affecting the traffic flow in the terminal area,including weather forecast data and Meteorological Report of Aerodrome Conditions(METAR)data.The terminal airspace is divided into smaller areas based on function and the weather severity index(WSI)characteristics extracted from weather forecast data are established to better quantify the impact of weather.MICL model preserves the advantages of the convolution neural network(CNN)and the long short-term memory(LSTM)model,and adopts two channels to input WSI and METAR information,respectively,which can fully reflect the temporal and spatial distribution characteristics of weather in the terminal area.Multi-scene experiments are designed based on the real historical data of Guangzhou Terminal Area operating in typical convective weather.The results show that the MICL model has excellent performance in mean squared error(MSE),root MSE(RMSE),mean absolute error(MAE)and other performance indicators compared with the existing machine learning models or deep learning models,such as Knearest neighbor(KNN),support vector regression(SVR),CNN and LSTM.In the forecast period ranging from 30 min to 6 h,the MICL model has the best prediction accuracy and stability. 展开更多
关键词 air traffic management traffic flow prediction convective weather deep learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部