期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
浅析兰州管制区扇区划分的战略意义
1
作者 徐凤河 崔宝平 《空中交通管理》 2003年第6期49-50,共2页
兰州管制区所辖面积近150万平方公里,是我国第二大飞行管制区,其管制区分别与呼和浩特、西安、成都、拉萨、乌鲁木齐以及蒙古管制区相邻,担负着繁忙的空中交通管制工作,是民航国内干线进出西北地区,以及国际航线连接欧亚两大洲的必经之... 兰州管制区所辖面积近150万平方公里,是我国第二大飞行管制区,其管制区分别与呼和浩特、西安、成都、拉萨、乌鲁木齐以及蒙古管制区相邻,担负着繁忙的空中交通管制工作,是民航国内干线进出西北地区,以及国际航线连接欧亚两大洲的必经之路,并连通中东与东亚地区的A596航路和西欧与我国港澳及东南亚的B330(欧亚)航路。这两条主干国际航路呈'十'字贯穿兰州管制区,空域航路结构复杂, 展开更多
关键词 空中交通管制区 扇区划分 兰州市 服务质量 陆空通信
原文传递
Recognition of Similar Weather Scenarios in Terminal Area Based on Contrastive Learning 被引量:2
2
作者 CHEN Haiyan LIU Zhenya +1 位作者 ZHOU Yi YUAN Ligang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第4期425-433,共9页
In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is design... In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is designed to improve the number and quality of weather scenarios samples according to the characteristics of convective weather images.Secondly,in the pre-trained recognition model of SWS-CL,a loss function is formulated to minimize the distance between the anchor and positive samples,and maximize the distance between the anchor and the negative samples in the latent space.Finally,the pre-trained SWS-CL model is fine-tuned with labeled samples to improve the recognition accuracy of SWS.The comparative experiments on the weather images of Guangzhou terminal area show that the proposed data augmentation method can effectively improve the quality of weather image dataset,and the proposed SWS-CL model can achieve satisfactory recognition accuracy.It is also verified that the fine-tuned SWS-CL model has obvious advantages in datasets with sparse labels. 展开更多
关键词 air traffic control terminal area similar weather scenarios(SWSs) image recognition contrastive learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部