To ensure flight safety,the complex network method is used to study the influence and invulnerability of air traffic cyber physical system(CPS)nodes.According to the rules of air traffic management,the logical couplin...To ensure flight safety,the complex network method is used to study the influence and invulnerability of air traffic cyber physical system(CPS)nodes.According to the rules of air traffic management,the logical coupling relationship between routes and sectors is analyzed,an air traffic CPS network model is constructed,and the indicators of node influence and invulnerability are established.The K-shell algorithm is improved to identify node influence,and the invulnerability is analyzed under random and selective attacks.Taking Airspace in Eastern China as an example,its influential nodes are sorted by degree,namely,K-shell,the improved K-shell(IKS)and betweenness centrality.The invulnerability of air traffic CPS under different attacks is analyzed.Results show that IKS can effectively identify the influential nodes in the air traffic CPS network,and IKS and betweenness centrality are the two key indicators that affect the invulnerability of air traffic CPS.展开更多
Airway networks are the basic carriers of air traffic.Characterizing airway networks will significantly improve the operating efficiency of aviation.This study is targeted at the airway network composed of 1479 waypoi...Airway networks are the basic carriers of air traffic.Characterizing airway networks will significantly improve the operating efficiency of aviation.This study is targeted at the airway network composed of 1479 waypoints in 2018 of China.Together with spatial structures,traffic flow characteristics,and the dominating traffic flow,four airway network models are constructed from the perspective of complex networks,including physical airway network,airway traffic network,directed airway traffic network,and dominance-based directed airway traffic network.Then the topological characteristics of different networks are statistically analyzed by using typical network measure indices,and the differences of these indices among different networks are investigated.Thereby,composite indices are proposed.Statistical results show that the airway network under the influence of traffic flows exhibits richer heterogeneity and asymmetrical between-node relationship,and the distributions of indices among different networks are significantly different.Comparative analysis of composite indices and traffic flows show that some waypoints yield great results in multiple composite indices and traffic volumes;some waypoints display large results in multiple composite indices but low traffic flows,and other waypoints only perform well in certain composite indices.The importance levels of waypoints are divided,by the K-means method based on degree composite index,betweenness composite index and closeness composite index,into three levels,and the reasonableness of clustering results is validated by the statistical results of traffic flows,airport number,and flight delay.展开更多
基金This work was supported by the Fundamental Research Funds for the Central Universities(No.3122019191).
文摘To ensure flight safety,the complex network method is used to study the influence and invulnerability of air traffic cyber physical system(CPS)nodes.According to the rules of air traffic management,the logical coupling relationship between routes and sectors is analyzed,an air traffic CPS network model is constructed,and the indicators of node influence and invulnerability are established.The K-shell algorithm is improved to identify node influence,and the invulnerability is analyzed under random and selective attacks.Taking Airspace in Eastern China as an example,its influential nodes are sorted by degree,namely,K-shell,the improved K-shell(IKS)and betweenness centrality.The invulnerability of air traffic CPS under different attacks is analyzed.Results show that IKS can effectively identify the influential nodes in the air traffic CPS network,and IKS and betweenness centrality are the two key indicators that affect the invulnerability of air traffic CPS.
基金This work was supported by the National Natural Science Foundations of China(Nos.U1833103,71801215,and U1933103)。
文摘Airway networks are the basic carriers of air traffic.Characterizing airway networks will significantly improve the operating efficiency of aviation.This study is targeted at the airway network composed of 1479 waypoints in 2018 of China.Together with spatial structures,traffic flow characteristics,and the dominating traffic flow,four airway network models are constructed from the perspective of complex networks,including physical airway network,airway traffic network,directed airway traffic network,and dominance-based directed airway traffic network.Then the topological characteristics of different networks are statistically analyzed by using typical network measure indices,and the differences of these indices among different networks are investigated.Thereby,composite indices are proposed.Statistical results show that the airway network under the influence of traffic flows exhibits richer heterogeneity and asymmetrical between-node relationship,and the distributions of indices among different networks are significantly different.Comparative analysis of composite indices and traffic flows show that some waypoints yield great results in multiple composite indices and traffic volumes;some waypoints display large results in multiple composite indices but low traffic flows,and other waypoints only perform well in certain composite indices.The importance levels of waypoints are divided,by the K-means method based on degree composite index,betweenness composite index and closeness composite index,into three levels,and the reasonableness of clustering results is validated by the statistical results of traffic flows,airport number,and flight delay.