This is a summarized paper. Two topics are discussed: Firstly, the concept, development and application of four kinds of satellite gravity surveying technology are introduced; Secondly, some problems of theory and met...This is a summarized paper. Two topics are discussed: Firstly, the concept, development and application of four kinds of satellite gravity surveying technology are introduced; Secondly, some problems of theory and method, which must be considered in the study of the \{Earth’s\} gravity field based on satellite gravity data, are expounded.展开更多
China has developed an airborne gravimetry system based on SINS/DGPS named SGA-WZ, the first system in which a strap- down inertial navigation system (SINS) has been used for airborne gravimetry in China. This gravi...China has developed an airborne gravimetry system based on SINS/DGPS named SGA-WZ, the first system in which a strap- down inertial navigation system (SINS) has been used for airborne gravimetry in China. This gravity measurement system consists of a strap-down inertial navigation system and a differential global positioning system (DGPS). In April 2010, a flight test was carried out in Shandong Province of China to test the accuracy of this system. The test was designed to assess the re- peatability and accuracy of the system. Two repeated flights and six grid flights were made. The flying altitude was about 400 m. The average flying speed was about 60 m/s, which corresponds to a spatial resolution of 4.8 km when using 160-s cutoff low-pass filter. This paper describes the data processing of the system. The evaluation of the internal precision is based on repeated flights and differences in crossover points. Gravity results in this test from the repeated flight lines show that the re- peatability of the repeat lines is 1.6 mGal with a spatial resolution of 4.8 kin, and the internal precision of grid flight data is 3.2 mGal with a spatial resolution of 4.8 km. There are some systematic errors in the gravity results, which can be modeled using trigonometric function. After the systematic errors are compensated, the precision of grid flight data can be better than 1 mGal.展开更多
文摘This is a summarized paper. Two topics are discussed: Firstly, the concept, development and application of four kinds of satellite gravity surveying technology are introduced; Secondly, some problems of theory and method, which must be considered in the study of the \{Earth’s\} gravity field based on satellite gravity data, are expounded.
基金supported by the National High-Tech Research&Development Program of China(Grant No.2006AA06A202)the Youth Innovation Foundation of China Aero Geophysical Survey&Remote Sensing Center for Land and Resources(Grant No.2010YFL05)
文摘China has developed an airborne gravimetry system based on SINS/DGPS named SGA-WZ, the first system in which a strap- down inertial navigation system (SINS) has been used for airborne gravimetry in China. This gravity measurement system consists of a strap-down inertial navigation system and a differential global positioning system (DGPS). In April 2010, a flight test was carried out in Shandong Province of China to test the accuracy of this system. The test was designed to assess the re- peatability and accuracy of the system. Two repeated flights and six grid flights were made. The flying altitude was about 400 m. The average flying speed was about 60 m/s, which corresponds to a spatial resolution of 4.8 km when using 160-s cutoff low-pass filter. This paper describes the data processing of the system. The evaluation of the internal precision is based on repeated flights and differences in crossover points. Gravity results in this test from the repeated flight lines show that the re- peatability of the repeat lines is 1.6 mGal with a spatial resolution of 4.8 kin, and the internal precision of grid flight data is 3.2 mGal with a spatial resolution of 4.8 km. There are some systematic errors in the gravity results, which can be modeled using trigonometric function. After the systematic errors are compensated, the precision of grid flight data can be better than 1 mGal.