We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which ...We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which the Z coarse approach relies on a high simplic-ity friction-type walker (of our own invention) driven by an axially cut piezoelectric tube. The walker is vertically inserted in a piezoelectric scanner tube (PST) with its brim laying at on the PST end as the inertial slider (driven by the PST) for the XZ (sample plane) motion. The STM is designed to be capable of searching rare microscopic targets (defects, dopants, boundaries, nano-devices, etc.) in a macroscopic sample area (square millimeters) under extreme conditions (low temperatures, strong magnetic elds, etc.) in which it ts. It gives good atomic resolution images after scanning a highly oriented pyrolytic graphite sample in air at room temperature.展开更多
In order to define the loading on protective doors of an underground tunnel, the exact knowledge of the blast propagation through tunnels is needed. Thirty-three scale high-explosive tests are conducted to obtain in-t...In order to define the loading on protective doors of an underground tunnel, the exact knowledge of the blast propagation through tunnels is needed. Thirty-three scale high-explosive tests are conducted to obtain in-tunnel blast pressure for detonations external, internal and at the tunnel entrance. The cross section of the concrete model tunnel is 0.67 m2. Explosive charges of TNT, ranging in mass from 400 g to 4 600 g, are detonated at various positions along the central axis of the model tunnel. Blast gages are flush-installed in the interior surface of the tunnel to record side-on blast pressure as it propagates down the tunnel. The engineering empirical formulas for predicting blast peak pressure are evaluated, and are found to be reasonably accurate for in-tunnel pressure prediction.展开更多
文摘We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which the Z coarse approach relies on a high simplic-ity friction-type walker (of our own invention) driven by an axially cut piezoelectric tube. The walker is vertically inserted in a piezoelectric scanner tube (PST) with its brim laying at on the PST end as the inertial slider (driven by the PST) for the XZ (sample plane) motion. The STM is designed to be capable of searching rare microscopic targets (defects, dopants, boundaries, nano-devices, etc.) in a macroscopic sample area (square millimeters) under extreme conditions (low temperatures, strong magnetic elds, etc.) in which it ts. It gives good atomic resolution images after scanning a highly oriented pyrolytic graphite sample in air at room temperature.
文摘In order to define the loading on protective doors of an underground tunnel, the exact knowledge of the blast propagation through tunnels is needed. Thirty-three scale high-explosive tests are conducted to obtain in-tunnel blast pressure for detonations external, internal and at the tunnel entrance. The cross section of the concrete model tunnel is 0.67 m2. Explosive charges of TNT, ranging in mass from 400 g to 4 600 g, are detonated at various positions along the central axis of the model tunnel. Blast gages are flush-installed in the interior surface of the tunnel to record side-on blast pressure as it propagates down the tunnel. The engineering empirical formulas for predicting blast peak pressure are evaluated, and are found to be reasonably accurate for in-tunnel pressure prediction.