Converting CO_(2) into valuable chemicals has become a widely used research method for CO_(2) conversion.In this work,the catalytic performance of pyramidal-4Ni catalysts supported on rare earth metal-doped CeO_(2)tow...Converting CO_(2) into valuable chemicals has become a widely used research method for CO_(2) conversion.In this work,the catalytic performance of pyramidal-4Ni catalysts supported on rare earth metal-doped CeO_(2)toward CO_(2) reductionreaction(CO_(2)RR)was investigated by using density-functional theorycalculations.For rare earth metal-doped CeO_(2),2Ce is substituted by 2 trivalent cations and at the same time one oxygen vacancy is created to make charge compensation.We investigated the oxygen vacancy nearest(Vo,N)and next-nearest(Vo,NN)to 4Ni,and found releasing CO and CO_(2) dissociation are the rate-determining steps,respectively,via the path of Vo,N and Vo,NN.Among the studied dopants(Ga,Sb,Lu,Gd,Pr,La,Bi),Gd is identified as the best dopant for catalyzing the reduction of CO_(2) at 823 K,with the turn-over frequency(TOF)of 104 times as large as that over 4Ni supported on pure CeO_(2).This exploration provides theoretical support and guidance for the research and application of rare earth metaldoped CeO_(2)-loaded Ni catalysts in the field of CO_(2) reduction.展开更多
Electrochemical N_(2) reduction provides a green and sustainable alternative to the Haber-Bosch technology for NH_(3 )synthesis.However,the extreme inertness of N_(2) molecules is a formidable challenge,which requires...Electrochemical N_(2) reduction provides a green and sustainable alternative to the Haber-Bosch technology for NH_(3 )synthesis.However,the extreme inertness of N_(2) molecules is a formidable challenge,which requires the development of an active electrocatalyst to drive the N_(2) reduction reaction(NRR)for NH_(3) production at ambient conditions.Herein,we demonstrate the development of La-doped TiO_(2) nanorods as an efficient NRR electrocatalyst for ambient NH3 synthesis.The optimized La-TiO_(2) catalyst offers a large NH_(3) yield of 23.06 pg h1 mgcat 1 and a high Faradaic efficiency of 14.54%at-0.70 V versus reversible hydrogen electrode in 0.1 M L1CIO_(4),outperforming most La-and Ti-based catalysts reported before.Significantly,it also demonstrates high electrochemical stability and its activity decay is negligible after 48 h test.The mechanism is further revealed by density functional theory calculations.展开更多
Oxygen evolution reaction(OER)is the dominant step for plenty of energy conversion and storage technologies.However,the OER suffers from sluggish kinetics and high overpotential due to its complex 4‐electron/proton t...Oxygen evolution reaction(OER)is the dominant step for plenty of energy conversion and storage technologies.However,the OER suffers from sluggish kinetics and high overpotential due to its complex 4‐electron/proton transfer mechanism.Thus,developing efficient electrocatalysts is particularly urgent to accelerate OER catalysis but still remains a great challenge.Herein,we have synthesized the novel cobalt molybdate nanoflakes(CoMoO_(4)‐O_(v)‐n@GF)with adjustable oxygen vacancies contents by in situ constructing CoMoO_(4) nanoflakes on graphite felt(GF)and annealing treatment under the reduction atmosphere.The best‐performing CoMoO_(4)‐O_(v)‐2@GF with optimal oxygen vacancies content shows splendid electrocatalytic performance with the low overpotential(296 mV at 10 mA cm^(‒2))and also small Tafel slope(62.4 mV dec^(‒1))in alkaline solution,which are comparable to those of the RuO_(2)@GF.The experimental and the density functional theory calculations results reveal that the construction of optimal oxygen vacancies in CoMoO_(4) can expose more active sites,narrow the band‐gap to increase the electrical conductivity,and modulate the free energy of the OER‐related intermediates to accelerate OER kinetics,thus improving its intrinsic activity.展开更多
A nonlinear analysis of urban evolution is made by using of spatial autocorrelation theory. A first-order nonlinear autoregression model based on Clark’s negative exponential model is proposed to show urban populatio...A nonlinear analysis of urban evolution is made by using of spatial autocorrelation theory. A first-order nonlinear autoregression model based on Clark’s negative exponential model is proposed to show urban population density. The new method and model are applied to Hangzhou City, China, as an example. The average distance of population activities, the auto-correlation coefficient of urban population density, and the auto-regressive function values all show trends of gradual increase from 1964 to 2000, but there always is a sharp first-order cutoff in the partial auto- correlations. These results indicate that urban development is a process of localization. The discovery of urban locality is significant to improve the cellular-automata-based urban simulation of modeling spatial complexity.展开更多
For heterogeneous catalysts,the build-up of interface contacts can influence markedly their activities.Being different from the conventional supported metal/oxide catalysts,the reverse type of oxide/metal structures,e...For heterogeneous catalysts,the build-up of interface contacts can influence markedly their activities.Being different from the conventional supported metal/oxide catalysts,the reverse type of oxide/metal structures,e.g.the ceria/Pt composite,have emerged as novel catalytic materials in many fields.However,it remains challenging to determine the optimal interface structure and/or the metal-oxide synergistic effect that can boost catalytic activities.In this work,we conducted density functional theory calculations with on-site Coulomb interaction correction to determine the optimal structures and investigate the physical as well as catalytic properties of various Ce O2/Pt(111)composites containing Ce O2(111)monolayer,bilayer,and trilayer at Pt(111).We found that the interaction strength between Ce O2(111)and Pt(111)substrate first reduces as the ceria slab grows from monolayer to bilayer,and then largely gets converged when the trilayer occurs.Such trend was well rationalized by analyzing the number and distances of O–Pt bonds at the interface.Calculated Bader charges uncovered the significant charge redistribution occurring around the interface,whereas the net electron transfer across the interface is non-significant and decreases as ceria thickness increases.Moreover,comparative calculations on oxygen vacancy formation energies clarified that oxygen removal can be promoted on the Ce O2/Pt(111)composites,especially at the interface.We finally employed CO oxidation as a model reaction to probe the surface reactivity,and determined an intrinsic activity order of monolayer Ce O2(111)>monolayer Ce O2(111)/Pt(111)>regular Ce O2(111).More importantly,we emphasized the significant role of the moderate ceria-Pt interaction at the interface that endows the Ce O2/Pt reverse catalyst both good thermostability and high catalytic activity.The monolayer Ce O2(111)/Pt(111)composite was theoretically predicted highly efficient for catalyzing CO oxidation.展开更多
The lattice parameters, elastic constants, cohesive energy, structural energy differences, as well as the properties of point defects and planar defects of hexagonal closepacked yttrium (hcpY) have been studied with...The lattice parameters, elastic constants, cohesive energy, structural energy differences, as well as the properties of point defects and planar defects of hexagonal closepacked yttrium (hcpY) have been studied with ab initio density functional theory for constructing an ex tensive database. Based on an analytical bondorder poial scheme, empirical manybody interatomic potential for hcpY has been developed. The model is fitted to some properties of Y, e.g., the lattice parameters, elastic constants, bulk modulus, cohesive energy, vacancy formation energy, and the structural energy differences. The present potential has ability to reproduce defect properties including the selfinterstitial atoms formation energies, vacancy formation energy, divacancy binding energy, as well as the bulk properties and the thermal dynamic properties.展开更多
The selectivities, including peri-, regio-, and diastereoselectivities, in the Staudinger reaction involving vicinal diimines and ketenes were investigated theoretically via the density functional theory (DFT) calcu...The selectivities, including peri-, regio-, and diastereoselectivities, in the Staudinger reaction involving vicinal diimines and ketenes were investigated theoretically via the density functional theory (DFT) calculation. The results indicate that vicinal diimines prefer stepwise [2+2] cycloaddition rather than [2+4] cycloaddition to generate cis-4-imino-β-lactams. The diimines attack the less sterically hindered exo-side of ketenes to generate zwitterionic intermediates, which directly undergo a conrota- tory ring closure to produce cis-4-imino-β-lactams whatever diimines with less or more bulky N-substituents. For unsymmetric vicinal ketoaldehyde-derived diimines, their ketimines attack the exo-side of ketenes and undergo a conrotatory ring closure to produce cis-4-aldimino-β-lactams due to less steric effect. The current theoretical studies provide very important information for in-depth understanding of the selective formation of mono-cis-β-lactams from vicinal diimines and ketenes.展开更多
The effects of Mg doping(MgAl) and native N vacancy(VN) on the electronic structures and transport properties of Al N nanowire(Al NNW) were theoretically investigated by using density functional theory. Either the MgA...The effects of Mg doping(MgAl) and native N vacancy(VN) on the electronic structures and transport properties of Al N nanowire(Al NNW) were theoretically investigated by using density functional theory. Either the MgAl defect or the VN defect prefers to be formed on the Al NNW surfaces. Both MgAl and VN defects could increase the conductivity owing to introducing a defect band inside the band gap of Al N and split the Al N band gap into two subgaps. The defect concentration has little influence on the magnitude of the subgaps. The MgAl serves as a shallow acceptor rendering the nanowire a p-type conductor. The VN introduces a deep donor state enabling the nanowire an n-type conductor. The MgAl systems exhibit higher conductivity than the VN ones owing to the narrow subgaps of MgAl systems. The conductivity is roughly proportional to the defect concentration in the MgAl and VN defect systems. When the MgAl and VN coexist, the hole state of the MgAl defect and the electron state of the VN defect will compensate each other and their coupling state appears just above the valence-band maximum leading to a little decrease of the band gap compared with the pure Al NNW, which is unfavorable for the enhancing of the conductivity.展开更多
基金This work is financially supported by the National Natural Science Foundation of China(No.22403073 and No.22103059)the Natural Science Program on Basic Research Project of Shaanxi Province(2023-JC-QN-0155)+1 种基金the Fundamental Research Funds for the Central Universities(xzy012024052)Yaqiong Su also acknowledges the"Young Talent Support Plan"of Xi`an Jiaotong University.Supercomputing facilities were provided by Hefei Advanced Computing Center and Computing Center in Xi'an.
文摘Converting CO_(2) into valuable chemicals has become a widely used research method for CO_(2) conversion.In this work,the catalytic performance of pyramidal-4Ni catalysts supported on rare earth metal-doped CeO_(2)toward CO_(2) reductionreaction(CO_(2)RR)was investigated by using density-functional theorycalculations.For rare earth metal-doped CeO_(2),2Ce is substituted by 2 trivalent cations and at the same time one oxygen vacancy is created to make charge compensation.We investigated the oxygen vacancy nearest(Vo,N)and next-nearest(Vo,NN)to 4Ni,and found releasing CO and CO_(2) dissociation are the rate-determining steps,respectively,via the path of Vo,N and Vo,NN.Among the studied dopants(Ga,Sb,Lu,Gd,Pr,La,Bi),Gd is identified as the best dopant for catalyzing the reduction of CO_(2) at 823 K,with the turn-over frequency(TOF)of 104 times as large as that over 4Ni supported on pure CeO_(2).This exploration provides theoretical support and guidance for the research and application of rare earth metaldoped CeO_(2)-loaded Ni catalysts in the field of CO_(2) reduction.
文摘Electrochemical N_(2) reduction provides a green and sustainable alternative to the Haber-Bosch technology for NH_(3 )synthesis.However,the extreme inertness of N_(2) molecules is a formidable challenge,which requires the development of an active electrocatalyst to drive the N_(2) reduction reaction(NRR)for NH_(3) production at ambient conditions.Herein,we demonstrate the development of La-doped TiO_(2) nanorods as an efficient NRR electrocatalyst for ambient NH3 synthesis.The optimized La-TiO_(2) catalyst offers a large NH_(3) yield of 23.06 pg h1 mgcat 1 and a high Faradaic efficiency of 14.54%at-0.70 V versus reversible hydrogen electrode in 0.1 M L1CIO_(4),outperforming most La-and Ti-based catalysts reported before.Significantly,it also demonstrates high electrochemical stability and its activity decay is negligible after 48 h test.The mechanism is further revealed by density functional theory calculations.
文摘Oxygen evolution reaction(OER)is the dominant step for plenty of energy conversion and storage technologies.However,the OER suffers from sluggish kinetics and high overpotential due to its complex 4‐electron/proton transfer mechanism.Thus,developing efficient electrocatalysts is particularly urgent to accelerate OER catalysis but still remains a great challenge.Herein,we have synthesized the novel cobalt molybdate nanoflakes(CoMoO_(4)‐O_(v)‐n@GF)with adjustable oxygen vacancies contents by in situ constructing CoMoO_(4) nanoflakes on graphite felt(GF)and annealing treatment under the reduction atmosphere.The best‐performing CoMoO_(4)‐O_(v)‐2@GF with optimal oxygen vacancies content shows splendid electrocatalytic performance with the low overpotential(296 mV at 10 mA cm^(‒2))and also small Tafel slope(62.4 mV dec^(‒1))in alkaline solution,which are comparable to those of the RuO_(2)@GF.The experimental and the density functional theory calculations results reveal that the construction of optimal oxygen vacancies in CoMoO_(4) can expose more active sites,narrow the band‐gap to increase the electrical conductivity,and modulate the free energy of the OER‐related intermediates to accelerate OER kinetics,thus improving its intrinsic activity.
基金Under the auspices of the National Natural Science Foundation of China (No. 40371039)
文摘A nonlinear analysis of urban evolution is made by using of spatial autocorrelation theory. A first-order nonlinear autoregression model based on Clark’s negative exponential model is proposed to show urban population density. The new method and model are applied to Hangzhou City, China, as an example. The average distance of population activities, the auto-correlation coefficient of urban population density, and the auto-regressive function values all show trends of gradual increase from 1964 to 2000, but there always is a sharp first-order cutoff in the partial auto- correlations. These results indicate that urban development is a process of localization. The discovery of urban locality is significant to improve the cellular-automata-based urban simulation of modeling spatial complexity.
文摘For heterogeneous catalysts,the build-up of interface contacts can influence markedly their activities.Being different from the conventional supported metal/oxide catalysts,the reverse type of oxide/metal structures,e.g.the ceria/Pt composite,have emerged as novel catalytic materials in many fields.However,it remains challenging to determine the optimal interface structure and/or the metal-oxide synergistic effect that can boost catalytic activities.In this work,we conducted density functional theory calculations with on-site Coulomb interaction correction to determine the optimal structures and investigate the physical as well as catalytic properties of various Ce O2/Pt(111)composites containing Ce O2(111)monolayer,bilayer,and trilayer at Pt(111).We found that the interaction strength between Ce O2(111)and Pt(111)substrate first reduces as the ceria slab grows from monolayer to bilayer,and then largely gets converged when the trilayer occurs.Such trend was well rationalized by analyzing the number and distances of O–Pt bonds at the interface.Calculated Bader charges uncovered the significant charge redistribution occurring around the interface,whereas the net electron transfer across the interface is non-significant and decreases as ceria thickness increases.Moreover,comparative calculations on oxygen vacancy formation energies clarified that oxygen removal can be promoted on the Ce O2/Pt(111)composites,especially at the interface.We finally employed CO oxidation as a model reaction to probe the surface reactivity,and determined an intrinsic activity order of monolayer Ce O2(111)>monolayer Ce O2(111)/Pt(111)>regular Ce O2(111).More importantly,we emphasized the significant role of the moderate ceria-Pt interaction at the interface that endows the Ce O2/Pt reverse catalyst both good thermostability and high catalytic activity.The monolayer Ce O2(111)/Pt(111)composite was theoretically predicted highly efficient for catalyzing CO oxidation.
文摘The lattice parameters, elastic constants, cohesive energy, structural energy differences, as well as the properties of point defects and planar defects of hexagonal closepacked yttrium (hcpY) have been studied with ab initio density functional theory for constructing an ex tensive database. Based on an analytical bondorder poial scheme, empirical manybody interatomic potential for hcpY has been developed. The model is fitted to some properties of Y, e.g., the lattice parameters, elastic constants, bulk modulus, cohesive energy, vacancy formation energy, and the structural energy differences. The present potential has ability to reproduce defect properties including the selfinterstitial atoms formation energies, vacancy formation energy, divacancy binding energy, as well as the bulk properties and the thermal dynamic properties.
文摘The selectivities, including peri-, regio-, and diastereoselectivities, in the Staudinger reaction involving vicinal diimines and ketenes were investigated theoretically via the density functional theory (DFT) calculation. The results indicate that vicinal diimines prefer stepwise [2+2] cycloaddition rather than [2+4] cycloaddition to generate cis-4-imino-β-lactams. The diimines attack the less sterically hindered exo-side of ketenes to generate zwitterionic intermediates, which directly undergo a conrota- tory ring closure to produce cis-4-imino-β-lactams whatever diimines with less or more bulky N-substituents. For unsymmetric vicinal ketoaldehyde-derived diimines, their ketimines attack the exo-side of ketenes and undergo a conrotatory ring closure to produce cis-4-aldimino-β-lactams due to less steric effect. The current theoretical studies provide very important information for in-depth understanding of the selective formation of mono-cis-β-lactams from vicinal diimines and ketenes.
基金supported by the National Natural Science Foundation of China(Grant Nos.51073048,51473042)the Leaders in Academe of Har-bin City of China(Grant No.2013RFXXJ024)the Science Foundation for Backup Leader of Leading Talent Echelon in Heilongjiang Province
文摘The effects of Mg doping(MgAl) and native N vacancy(VN) on the electronic structures and transport properties of Al N nanowire(Al NNW) were theoretically investigated by using density functional theory. Either the MgAl defect or the VN defect prefers to be formed on the Al NNW surfaces. Both MgAl and VN defects could increase the conductivity owing to introducing a defect band inside the band gap of Al N and split the Al N band gap into two subgaps. The defect concentration has little influence on the magnitude of the subgaps. The MgAl serves as a shallow acceptor rendering the nanowire a p-type conductor. The VN introduces a deep donor state enabling the nanowire an n-type conductor. The MgAl systems exhibit higher conductivity than the VN ones owing to the narrow subgaps of MgAl systems. The conductivity is roughly proportional to the defect concentration in the MgAl and VN defect systems. When the MgAl and VN coexist, the hole state of the MgAl defect and the electron state of the VN defect will compensate each other and their coupling state appears just above the valence-band maximum leading to a little decrease of the band gap compared with the pure Al NNW, which is unfavorable for the enhancing of the conductivity.