Impinging jets are frequently adapted for cooling overheated parts. With the film cooling technique, this process improves thermal exchanges between walls and fluid. However if many works have concerned only the therm...Impinging jets are frequently adapted for cooling overheated parts. With the film cooling technique, this process improves thermal exchanges between walls and fluid. However if many works have concerned only the thermal aspect of this problem [1], its dynamic field has been rarely studied especially for multiple impingements. As the two phenomena cannot be totally dissociated, we have undertaken the aerodynamic and thermal study of jets impinging on a plane wall. Various techniques have been used as visualizations (spreading over method, LASER sheet visualizations), LDA measurements to propose a topology schema of the flow and infrared thermography.展开更多
Conventional 3D metal printings are generally time-consuming as well as lacking of high performance printable inks.From an alternative way,here we proposed the method of liquid phase 3D printing for quickly making con...Conventional 3D metal printings are generally time-consuming as well as lacking of high performance printable inks.From an alternative way,here we proposed the method of liquid phase 3D printing for quickly making conductive metal objects.Through introducing metal alloys whose melting point is slightly above room temperature as printing inks,several representative structures spanning from one,two and three dimension to more complex patterns were demonstrated to be quickly fabricated.Compared with the air-cooling in a conventional 3D printing,the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating the target metal objects.This unique strategy also efficiently prevents the liquid metal inks from air oxidation,which is hard to avoid otherwise in an ordinary 3D printing.The key physical factors(such as properties of the cooling fluid,air pressure within the syringe barrel and needle diameter,types and properties of the printing ink)and several interesting intermediate fluids interaction phenomena between liquid metal and conventional cooling fluids such as water or ethanol,which evidently affecting the printing quality,were disclosed.In addition,a basic route to make future liquid phase 3D printer incorporated with both syringe pump and needle arrays was also suggested.The liquid phase 3D printing,which owns potential values not available in a conventional method,opens an efficient way for quickly making conductive metal objects in the coming time.展开更多
This paper discusses thermo-conductive plastic finned tube radiators used in water saving type powerstations. First, the development of thermo-conductive plastics is introduced. Second, in order todetermine the ration...This paper discusses thermo-conductive plastic finned tube radiators used in water saving type powerstations. First, the development of thermo-conductive plastics is introduced. Second, in order todetermine the rational geometric dimensions of thermo-conductive plastic finned tubes, an objectivefunction which takes the minimum volume of the consumed material for making finned tubes as an ob-ject is introduced. On the basis of the function, the economy comparison between thermaxonductiveplastic finned tubes and metal finned tubes is conducted.展开更多
The heat-transfer behaviour of the conduction cold plate system used for avionics is investigated in this paper. The steady-state temperature profile for the cold plate is derived and the relationship between the cool...The heat-transfer behaviour of the conduction cold plate system used for avionics is investigated in this paper. The steady-state temperature profile for the cold plate is derived and the relationship between the coolant mass flowrate, the heat load and the hashest cold plate temperature is established.A model is proposed to describe the transient thermal rosponse of the cold plate under thermal shock condition. The analytic solution of the transient heat transfer within the cold plate is provided. The results of this paper agree with those of the finite element method and can be used for the structural design and performance evaluation of cold plate system.展开更多
This paper presents an experimental investigation of the influence of a transversal flow deflector on the cooling of a heated block mounted on a flat plate.The deflector is inclined and therefore it guides the air flo...This paper presents an experimental investigation of the influence of a transversal flow deflector on the cooling of a heated block mounted on a flat plate.The deflector is inclined and therefore it guides the air flow to the upper surface of the block.This configuration is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic card.The electronic component is assumed dissipating low heat power,as such,air forced convection is still a sufficient cooling way even without fan or heat sink on the component.The measurements are given by hot and cold wires anemometers and by an InfraRed camera.The results give details of the effects of the deflection on the hydrodynamic and the thermal fields on and over the block for different inclination angles.They show that the deviation caused by the deflector may significantly enhance the heat transfer from the component.Deflection is also able to avoid local overheating of the electronic component.Optimum heat transfer rate and homogenised temperature are shown to be obtained with an inclination angle =30°.展开更多
This paper discusses air forced convection heat transfer from inline protruding elements arranged in eight rows. The streamwise and spanwise spacings between elements were varied using a splitter plate that can be pos...This paper discusses air forced convection heat transfer from inline protruding elements arranged in eight rows. The streamwise and spanwise spacings between elements were varied using a splitter plate that can be positioned at three different modular configurations. A set of empirical formulas waspresented to correlate the experimental data for the design of air cooling systems. Arrays of components with one odd-size module have been tested also. Experimental results show that blocks near the entrance and behind the odd-size module have improved performance compared with uniform arrangements. Accordingly, temperature sensitive components are suggested to be arranged in these locations.展开更多
基金the Direchon desRecherches, EtUdes et Techniques.
文摘Impinging jets are frequently adapted for cooling overheated parts. With the film cooling technique, this process improves thermal exchanges between walls and fluid. However if many works have concerned only the thermal aspect of this problem [1], its dynamic field has been rarely studied especially for multiple impingements. As the two phenomena cannot be totally dissociated, we have undertaken the aerodynamic and thermal study of jets impinging on a plane wall. Various techniques have been used as visualizations (spreading over method, LASER sheet visualizations), LDA measurements to propose a topology schema of the flow and infrared thermography.
基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.KGZD-EW-T04)
文摘Conventional 3D metal printings are generally time-consuming as well as lacking of high performance printable inks.From an alternative way,here we proposed the method of liquid phase 3D printing for quickly making conductive metal objects.Through introducing metal alloys whose melting point is slightly above room temperature as printing inks,several representative structures spanning from one,two and three dimension to more complex patterns were demonstrated to be quickly fabricated.Compared with the air-cooling in a conventional 3D printing,the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating the target metal objects.This unique strategy also efficiently prevents the liquid metal inks from air oxidation,which is hard to avoid otherwise in an ordinary 3D printing.The key physical factors(such as properties of the cooling fluid,air pressure within the syringe barrel and needle diameter,types and properties of the printing ink)and several interesting intermediate fluids interaction phenomena between liquid metal and conventional cooling fluids such as water or ethanol,which evidently affecting the printing quality,were disclosed.In addition,a basic route to make future liquid phase 3D printer incorporated with both syringe pump and needle arrays was also suggested.The liquid phase 3D printing,which owns potential values not available in a conventional method,opens an efficient way for quickly making conductive metal objects in the coming time.
文摘This paper discusses thermo-conductive plastic finned tube radiators used in water saving type powerstations. First, the development of thermo-conductive plastics is introduced. Second, in order todetermine the rational geometric dimensions of thermo-conductive plastic finned tubes, an objectivefunction which takes the minimum volume of the consumed material for making finned tubes as an ob-ject is introduced. On the basis of the function, the economy comparison between thermaxonductiveplastic finned tubes and metal finned tubes is conducted.
文摘The heat-transfer behaviour of the conduction cold plate system used for avionics is investigated in this paper. The steady-state temperature profile for the cold plate is derived and the relationship between the coolant mass flowrate, the heat load and the hashest cold plate temperature is established.A model is proposed to describe the transient thermal rosponse of the cold plate under thermal shock condition. The analytic solution of the transient heat transfer within the cold plate is provided. The results of this paper agree with those of the finite element method and can be used for the structural design and performance evaluation of cold plate system.
基金support of the Comité Mixte Franco-Tunisien pour la Coopération Universitaire(ProjectCMCU 08G1131)
文摘This paper presents an experimental investigation of the influence of a transversal flow deflector on the cooling of a heated block mounted on a flat plate.The deflector is inclined and therefore it guides the air flow to the upper surface of the block.This configuration is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic card.The electronic component is assumed dissipating low heat power,as such,air forced convection is still a sufficient cooling way even without fan or heat sink on the component.The measurements are given by hot and cold wires anemometers and by an InfraRed camera.The results give details of the effects of the deflection on the hydrodynamic and the thermal fields on and over the block for different inclination angles.They show that the deviation caused by the deflector may significantly enhance the heat transfer from the component.Deflection is also able to avoid local overheating of the electronic component.Optimum heat transfer rate and homogenised temperature are shown to be obtained with an inclination angle =30°.
文摘This paper discusses air forced convection heat transfer from inline protruding elements arranged in eight rows. The streamwise and spanwise spacings between elements were varied using a splitter plate that can be positioned at three different modular configurations. A set of empirical formulas waspresented to correlate the experimental data for the design of air cooling systems. Arrays of components with one odd-size module have been tested also. Experimental results show that blocks near the entrance and behind the odd-size module have improved performance compared with uniform arrangements. Accordingly, temperature sensitive components are suggested to be arranged in these locations.