This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over ...This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over the last20 years.The research methods employed in these studies are also explained in detail.Based on the current literature,standard procedures for airplane personal ventilation and air quality investigations are defined for each study approach.Present study gaps are examined,and prospective study subjects for various research approaches are suggested.展开更多
The high aerodynamic noise induced by automotive air conditioning systems has important effects on the ride comfort, and the centrifugal fan is the largest noise source in these systems. It is very important to reduce...The high aerodynamic noise induced by automotive air conditioning systems has important effects on the ride comfort, and the centrifugal fan is the largest noise source in these systems. It is very important to reduce the aerodynamic noise generated by the centrifugal fan. The flow field and the sound field on the whole centrifugal fan configuration have been carried out using the computational fluid dynamics. Simulation results show that the sound pressure level near the outlet of the centrifugal fan is too high. Based on the relationship between flow characteristics and the aerodynamic noise, four parameters of the centrifugal fan, i.e., impeller blade's outlet angle 0, volute tongue's gap t, collector inclination angle fl, and rotating speed n, were selected as design variables and optimized using response surface methodology. While keeping the function of flow rate unchanged, the peak noise level is reduced by 8 dB or 10.8%. The noise level is satisfactorily reduced.展开更多
A modification to the PANS(partially averaged Navier-Stokes) model is proposed to simulate unsteady cavitating flows. In the model, the parameter fk is modified to vary as a function of the ratios between the water de...A modification to the PANS(partially averaged Navier-Stokes) model is proposed to simulate unsteady cavitating flows. In the model, the parameter fk is modified to vary as a function of the ratios between the water density and the mixture density in the local flows. The objective of this study is to validate the modified model and further understand the interaction between turbulence and cavitation around a Clark-Y hydrofoil. The comparisons between the numerical and experiment results show that the modified model can be improved to predict the cavity evolution, vortex shedding frequency and the lift force fluctuating in time fairly well, as it can effectively modulate the eddy viscosity in the cavitating region and various levels of physical turbulent fluctuations are resolved. In addition, from the computational results, it is proved that cavitation phenomenon physically influences the turbulent level, especially by the vortex shedding behaviors. Also, the mean u-velocity profiles demonstrate that the attached cavity thickness can alter the local turbulent shear layer.展开更多
Developing a robust computational strategy to address the rich physical characteristic involved in the thermcdynamic effects on the cryogenic cavitation remains a challenge in research. The objective of the present st...Developing a robust computational strategy to address the rich physical characteristic involved in the thermcdynamic effects on the cryogenic cavitation remains a challenge in research. The objective of the present study is to focus on developing mod- elling strategy to simulate cavitating flows in liquid nitrogen. For this purpose, numerical simulation over a 2D quarter caliber hydrofoil is investigated by calibrating cavitation model parameters and implementing the thermodynamic effects to the Zwart cavitation model. Experimental measurements of pressure and temperature are utilized to validate the extensional Zwart cavi- tation model. The results show that the cavitation dynamics characteristic under the cryogenic environment ale different from that under the isothermal conditions: the cryogenic case yields a substantially shorter cavity around the hydrofoil, and the pre- dicted pressure and temperature inside the cavity are steeper under the cryogenic conditions. Compared with the experimental data, the computational predictions with the modified evaporation and condensation parameters display better results than the default parameters from the room temperature liquids. Based on a wide range of computations and comparisons, the extension- al Zwart cavitation model may predict more accurately the quasi-steady cavitation over a hydrofoil in liquid nitrogen by pri- marily altering the evaporation rate near the leading edge and the condensation rate in the cavity closure region.展开更多
基金the National Natural Science Foundation of China(No.11902153)the Natural Science Foundation of Jiangsu Province(No.BK20190378)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over the last20 years.The research methods employed in these studies are also explained in detail.Based on the current literature,standard procedures for airplane personal ventilation and air quality investigations are defined for each study approach.Present study gaps are examined,and prospective study subjects for various research approaches are suggested.
基金Project(50975083) supported by the National Natural Science Foundation of ChinaProject(61075001) supported by China State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyProject(201-IV-068) supported by the Fundamental Research Funds for the Central Universities,China
文摘The high aerodynamic noise induced by automotive air conditioning systems has important effects on the ride comfort, and the centrifugal fan is the largest noise source in these systems. It is very important to reduce the aerodynamic noise generated by the centrifugal fan. The flow field and the sound field on the whole centrifugal fan configuration have been carried out using the computational fluid dynamics. Simulation results show that the sound pressure level near the outlet of the centrifugal fan is too high. Based on the relationship between flow characteristics and the aerodynamic noise, four parameters of the centrifugal fan, i.e., impeller blade's outlet angle 0, volute tongue's gap t, collector inclination angle fl, and rotating speed n, were selected as design variables and optimized using response surface methodology. While keeping the function of flow rate unchanged, the peak noise level is reduced by 8 dB or 10.8%. The noise level is satisfactorily reduced.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172040 and 51239005)the Beijing Municipal Natural Science Foundation(Grant No.3144043)
文摘A modification to the PANS(partially averaged Navier-Stokes) model is proposed to simulate unsteady cavitating flows. In the model, the parameter fk is modified to vary as a function of the ratios between the water density and the mixture density in the local flows. The objective of this study is to validate the modified model and further understand the interaction between turbulence and cavitation around a Clark-Y hydrofoil. The comparisons between the numerical and experiment results show that the modified model can be improved to predict the cavity evolution, vortex shedding frequency and the lift force fluctuating in time fairly well, as it can effectively modulate the eddy viscosity in the cavitating region and various levels of physical turbulent fluctuations are resolved. In addition, from the computational results, it is proved that cavitation phenomenon physically influences the turbulent level, especially by the vortex shedding behaviors. Also, the mean u-velocity profiles demonstrate that the attached cavity thickness can alter the local turbulent shear layer.
基金supported by the Natural Science Foundation of Heilongjiang Province of China(Grant No.A201409)the Special Fund Project for Technology Innovation Talent of Harbin(Grant No.2013RFLXJ007)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201159)
文摘Developing a robust computational strategy to address the rich physical characteristic involved in the thermcdynamic effects on the cryogenic cavitation remains a challenge in research. The objective of the present study is to focus on developing mod- elling strategy to simulate cavitating flows in liquid nitrogen. For this purpose, numerical simulation over a 2D quarter caliber hydrofoil is investigated by calibrating cavitation model parameters and implementing the thermodynamic effects to the Zwart cavitation model. Experimental measurements of pressure and temperature are utilized to validate the extensional Zwart cavi- tation model. The results show that the cavitation dynamics characteristic under the cryogenic environment ale different from that under the isothermal conditions: the cryogenic case yields a substantially shorter cavity around the hydrofoil, and the pre- dicted pressure and temperature inside the cavity are steeper under the cryogenic conditions. Compared with the experimental data, the computational predictions with the modified evaporation and condensation parameters display better results than the default parameters from the room temperature liquids. Based on a wide range of computations and comparisons, the extension- al Zwart cavitation model may predict more accurately the quasi-steady cavitation over a hydrofoil in liquid nitrogen by pri- marily altering the evaporation rate near the leading edge and the condensation rate in the cavity closure region.