Natural disaster or large-scale unexpected events easily make the terrestrial network overloaded,paralyzed, or totally destroyed. It is highly demanded to build an emergency network which can be deployed rapidly, offe...Natural disaster or large-scale unexpected events easily make the terrestrial network overloaded,paralyzed, or totally destroyed. It is highly demanded to build an emergency network which can be deployed rapidly, offer high data rate and wide coverage. The emergence of aerial platforms especially the low altitude platforms(LAPs) indicates a stable and reliable direction for the development of emergency network. Hybrid satellite-aerial-terrestrial(HSAT) networks have the ability to provide effective services rather than traditional infrastructures during the emergency situation. In this paper, the aerial platforms and the HSAT networks are surveyed and the key technologies are discussed from several aspects. The challenges of the HSAT networks are also outlined finally.展开更多
In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between H...In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.展开更多
基金supported by the National 863 Project under Grant No.2015AA015701National Nature Science Foundation of China under Grant No. 61421061
文摘Natural disaster or large-scale unexpected events easily make the terrestrial network overloaded,paralyzed, or totally destroyed. It is highly demanded to build an emergency network which can be deployed rapidly, offer high data rate and wide coverage. The emergence of aerial platforms especially the low altitude platforms(LAPs) indicates a stable and reliable direction for the development of emergency network. Hybrid satellite-aerial-terrestrial(HSAT) networks have the ability to provide effective services rather than traditional infrastructures during the emergency situation. In this paper, the aerial platforms and the HSAT networks are surveyed and the key technologies are discussed from several aspects. The challenges of the HSAT networks are also outlined finally.
基金sponsored by National Natural Science Foundation of China (No.91538104,No.91438205)China Postdoctoral Science Foundation (No.2011M500664)
文摘In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.