ZnO nanoparticles were first encapsulated in submicron PS hollow microspheres through two-step swelling process of core-shell structured PMMA/PS (PMMA: polymethyl methao- rylate) microspheres in acid-alkali solutio...ZnO nanoparticles were first encapsulated in submicron PS hollow microspheres through two-step swelling process of core-shell structured PMMA/PS (PMMA: polymethyl methao- rylate) microspheres in acid-alkali solution, and the ZnO precursors, i.e. the ethanol solu- tions of (CHaCOO)2Zn and LiOH. The transmission electron microscope, X-ray diffraction, and thermogravimetric analysis results show that the feeding order of ethanol solutions of (CH3COO)2Zn and LiOH in the second swelling step has great influence on the loading efficiency and the size of ZnO nanoparticles, but little on their crystal form. The photolumi- nescence and UV-Vis absorption behavior of ZnO/PS microspheres show that the PS shell can effectively avoid the fluorescence quenching effect.展开更多
This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly ...This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly and cheap technology, common in polymer processing and known as gas foaming. The central role played by ad hoc polymeric hollow micro- and nano-particles in a variety of emerging applications such as drug delivery, medical imaging, advanced materials, as well as in fundamental studies in nanotechnology highlights the wide relevance of the proposed method. Our key contribution to overcome the physical lower bound in the micro- and nano-scale gas foaming was to embed, prior to foaming, bulk micro- and nano-particles in a removable and deformable barrier film, whose role is to prevent the loss of the blowing agent, which is otherwise too fast to allow bubble formation. Furthermore, the barrier film allows for non-isotropic deformation of the particle and/or of the hollow, affording non-spherical hollow particles. In comparison with available methods to produce hollow micro- and nano-particles, our method is versatile since it offers independent control over the dimensions, material and shape of the particles, and the number, shape and open/closed features of the hollows. We have gas- foamed polystyrene and poly-(lactic-co-glycolic) acid particles 200 ~m to 200 nm in size, spherical, ellipsoidal and discoidal in shape, obtaining open or closed, single or multiple, variable in size hollows.展开更多
文摘ZnO nanoparticles were first encapsulated in submicron PS hollow microspheres through two-step swelling process of core-shell structured PMMA/PS (PMMA: polymethyl methao- rylate) microspheres in acid-alkali solution, and the ZnO precursors, i.e. the ethanol solu- tions of (CHaCOO)2Zn and LiOH. The transmission electron microscope, X-ray diffraction, and thermogravimetric analysis results show that the feeding order of ethanol solutions of (CH3COO)2Zn and LiOH in the second swelling step has great influence on the loading efficiency and the size of ZnO nanoparticles, but little on their crystal form. The photolumi- nescence and UV-Vis absorption behavior of ZnO/PS microspheres show that the PS shell can effectively avoid the fluorescence quenching effect.
文摘This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly and cheap technology, common in polymer processing and known as gas foaming. The central role played by ad hoc polymeric hollow micro- and nano-particles in a variety of emerging applications such as drug delivery, medical imaging, advanced materials, as well as in fundamental studies in nanotechnology highlights the wide relevance of the proposed method. Our key contribution to overcome the physical lower bound in the micro- and nano-scale gas foaming was to embed, prior to foaming, bulk micro- and nano-particles in a removable and deformable barrier film, whose role is to prevent the loss of the blowing agent, which is otherwise too fast to allow bubble formation. Furthermore, the barrier film allows for non-isotropic deformation of the particle and/or of the hollow, affording non-spherical hollow particles. In comparison with available methods to produce hollow micro- and nano-particles, our method is versatile since it offers independent control over the dimensions, material and shape of the particles, and the number, shape and open/closed features of the hollows. We have gas- foamed polystyrene and poly-(lactic-co-glycolic) acid particles 200 ~m to 200 nm in size, spherical, ellipsoidal and discoidal in shape, obtaining open or closed, single or multiple, variable in size hollows.