Noble metal/titania hollow nanomaterials usually exhibit excellent photocatalytic activity because of their high specific surface area,low density,good surface permeability,strong light-harvesting capacity,and rapid i...Noble metal/titania hollow nanomaterials usually exhibit excellent photocatalytic activity because of their high specific surface area,low density,good surface permeability,strong light-harvesting capacity,and rapid interfacial charge transfer. However,the present preparation methods usually include complicated and multistep procedures,which can cause damage to the hollow nanostructures. In this paper,a facile template-induced synthesis,based on a template-directed deposition and in situ template-sacrificial dissolution,was employed to prepare Ag-modified TiO 2(Ag/TiO 2) hollow octahedra using Ag2 O octahedra as templates and TiF 4 as the precursor. In the synthetic strategy,the shells of TiO 2 hollow octahedra were formed by coating TiO 2 nanoparticles on the surface of Ag2 O templates based on the template-directed deposition. Simultaneously,the Ag2 O templates can be in situ removed by dissolving the Ag2 O octahedral template in HF solution produced via the hydrolysis reaction of TiF 4 in the reaction system. In addition,Ag nanoparticles were deposited on the inside and outside surfaces of TiO 2 shells by effectively using the photosensitive properties of Ag2 O and Ag+ ions under light irradiation,along with the formation of TiO 2 hollow octahedra. The Ag/TiO 2 hollow octahedra exhibited high photocatalytic activity because of their(1) short diffusion distances between photogenerated electrons and holes because of the thin shells of Ag/TiO 2 hollow octahedral,(2) deposition of Ag nanoparticles on the inside and outside surfaces of TiO 2 shells,and(3) rapid interfacial charge transfer between TiO 2 shells and Ag nanoparticles. This work may also provide new insights into preparing other Ag-modified and hollow nanostructured photocatalysts.展开更多
Manganese oxide hollow spheres were prepared by a novel and facile approach using pH- responsive microgels as templates. The final products were thoroughly characterized with X-ray powder diffraction, thermogravimetri...Manganese oxide hollow spheres were prepared by a novel and facile approach using pH- responsive microgels as templates. The final products were thoroughly characterized with X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared, and transmission electron microscopy. The results reveal that the shell thickness of manganese oxide hollow spheres increased with the dosage of KMnO4, which implies that a controllable and feasible strategy for manganese oxide hollow spheres prepa- ration has been established. Further studies on the microgels template showed some of them had an irreversible swelling/deswelling transition due to the uneven cross-link extent. Based on the results, a probable formation mechanism for the hollow spheres was proposed.展开更多
Fabrication of TiO 2 hollow microspheres(TiO 2-HMSs) has attracted considerable attention owing to their low density,high photoreactivity,and easy to separate and reuse. A fluoride-free method for the fabrication of...Fabrication of TiO 2 hollow microspheres(TiO 2-HMSs) has attracted considerable attention owing to their low density,high photoreactivity,and easy to separate and reuse. A fluoride-free method for the fabrication of TiO 2-HMSs is reported by refluxing a mixed solution of H3PW12O40(0.4 mmol),KCl(2.5 mmol) and Ti(SO4)2(2–25 mmol) at 125 °C for 8 h,followed by decomposition of the K3PW12O40(KPW) template in basic solution. The prepared TiO 2-HMSs are characterized by X-ray diffraction,transmission electron microscopy,scanning electron microscopy,Fourier transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The activities of the photocatalysts are evaluated by photocatalytic degradation of Brilliant Red X-3B,an anionic dye,under UV irradiation. It is observed that the TiO 2-HMSs exhibit diameters of approximately 0.5–1 μm,and the photocatalytic activity of TiO 2-HMSs initially increases and then decreases with an increasing amount of Ti(SO4)2. The TiO 2-HMSs prepared in the presence of 4 mmol Ti(SO4)2 exhibit the highest photocatalytic activity,which is 2.1 times higher than TiO 2 nanoparticles(prepared in the absence of the KPW template). The enhanced photocatalytic activity of the prepared TiO 2-HMSs is ascribed to the improved crystallization,coupling effect between TiO 2and the residual KPW template,and the unique hollow structures of TiO 2-HMSs.展开更多
Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of ro...Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of roof concrete, respectively. The ductility indexes of the box girder and hollow slab were 1.99 and 1.23, respectively, according to the energy viewpoint. Based on the horizontal section hypothesis, the nonlinear computation procedure was established using the limited banding law, and it could carry out the entire performance analysis including the unloading, mainly focusing on the ways to achieve the unloading curves computation through stress-strain, moment-curvature and load-displacement curves. Through the procedure, parameters that influence on the bearing capacity, deformation performance and ductility of the structures were analyzed. Those parameters were quantity of prestressed reinforcement and tension coefficients of prestressed reinforcement. From the analysis, some useful conclusions can be obtained.展开更多
SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air.X-ray diffraction,scanning electron microscopy,and t...SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air.X-ray diffraction,scanning electron microscopy,and transmission electron microscopy show that the as-obtained SnO2 hollow spheres have a wall thickness of about 50 nm,and consist of nanosized SnO2 particles with a mean diameter of about 15 nm.Electrochemical measurements indicate that the SnO2 hollow spheres exhibit improved electrochemical performance in terms of specific capacity and rate capability in comparison with commercial SnO2 when used as anode materials for lithium-ion batteries.The enhanced performance may be attributed to the spherical and hollow structure,as well as the building blocks of SnO2 nanoparticles.展开更多
基金supported by the National Natural Science Foundation of China(5120839621277107+5 种基金21477094and 51472192)the Program for New Century Excellent Talents in University(NCET-13-0944)the Fundamental Research Funds for the Central Universities(WUT 2014-1a-0032014-VII-037and 2015IB002)~~
文摘Noble metal/titania hollow nanomaterials usually exhibit excellent photocatalytic activity because of their high specific surface area,low density,good surface permeability,strong light-harvesting capacity,and rapid interfacial charge transfer. However,the present preparation methods usually include complicated and multistep procedures,which can cause damage to the hollow nanostructures. In this paper,a facile template-induced synthesis,based on a template-directed deposition and in situ template-sacrificial dissolution,was employed to prepare Ag-modified TiO 2(Ag/TiO 2) hollow octahedra using Ag2 O octahedra as templates and TiF 4 as the precursor. In the synthetic strategy,the shells of TiO 2 hollow octahedra were formed by coating TiO 2 nanoparticles on the surface of Ag2 O templates based on the template-directed deposition. Simultaneously,the Ag2 O templates can be in situ removed by dissolving the Ag2 O octahedral template in HF solution produced via the hydrolysis reaction of TiF 4 in the reaction system. In addition,Ag nanoparticles were deposited on the inside and outside surfaces of TiO 2 shells by effectively using the photosensitive properties of Ag2 O and Ag+ ions under light irradiation,along with the formation of TiO 2 hollow octahedra. The Ag/TiO 2 hollow octahedra exhibited high photocatalytic activity because of their(1) short diffusion distances between photogenerated electrons and holes because of the thin shells of Ag/TiO 2 hollow octahedral,(2) deposition of Ag nanoparticles on the inside and outside surfaces of TiO 2 shells,and(3) rapid interfacial charge transfer between TiO 2 shells and Ag nanoparticles. This work may also provide new insights into preparing other Ag-modified and hollow nanostructured photocatalysts.
文摘Manganese oxide hollow spheres were prepared by a novel and facile approach using pH- responsive microgels as templates. The final products were thoroughly characterized with X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared, and transmission electron microscopy. The results reveal that the shell thickness of manganese oxide hollow spheres increased with the dosage of KMnO4, which implies that a controllable and feasible strategy for manganese oxide hollow spheres prepa- ration has been established. Further studies on the microgels template showed some of them had an irreversible swelling/deswelling transition due to the uneven cross-link extent. Based on the results, a probable formation mechanism for the hollow spheres was proposed.
基金supported by Program for New Century Excellent Talents in University(NCET-12-0668)the National Natural Science Foundation of China(21373275120977114)~~
文摘Fabrication of TiO 2 hollow microspheres(TiO 2-HMSs) has attracted considerable attention owing to their low density,high photoreactivity,and easy to separate and reuse. A fluoride-free method for the fabrication of TiO 2-HMSs is reported by refluxing a mixed solution of H3PW12O40(0.4 mmol),KCl(2.5 mmol) and Ti(SO4)2(2–25 mmol) at 125 °C for 8 h,followed by decomposition of the K3PW12O40(KPW) template in basic solution. The prepared TiO 2-HMSs are characterized by X-ray diffraction,transmission electron microscopy,scanning electron microscopy,Fourier transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The activities of the photocatalysts are evaluated by photocatalytic degradation of Brilliant Red X-3B,an anionic dye,under UV irradiation. It is observed that the TiO 2-HMSs exhibit diameters of approximately 0.5–1 μm,and the photocatalytic activity of TiO 2-HMSs initially increases and then decreases with an increasing amount of Ti(SO4)2. The TiO 2-HMSs prepared in the presence of 4 mmol Ti(SO4)2 exhibit the highest photocatalytic activity,which is 2.1 times higher than TiO 2 nanoparticles(prepared in the absence of the KPW template). The enhanced photocatalytic activity of the prepared TiO 2-HMSs is ascribed to the improved crystallization,coupling effect between TiO 2and the residual KPW template,and the unique hollow structures of TiO 2-HMSs.
基金National Natural Science Foundation of China(No.50678063)
文摘Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of roof concrete, respectively. The ductility indexes of the box girder and hollow slab were 1.99 and 1.23, respectively, according to the energy viewpoint. Based on the horizontal section hypothesis, the nonlinear computation procedure was established using the limited banding law, and it could carry out the entire performance analysis including the unloading, mainly focusing on the ways to achieve the unloading curves computation through stress-strain, moment-curvature and load-displacement curves. Through the procedure, parameters that influence on the bearing capacity, deformation performance and ductility of the structures were analyzed. Those parameters were quantity of prestressed reinforcement and tension coefficients of prestressed reinforcement. From the analysis, some useful conclusions can be obtained.
基金supported by the National Natural Science Foundation of China (21121063)the National Key Project on Basic Research(2011CB935700 and 2009CB930400)the Chinese Academy of Sciences
文摘SnO2 hollow spheres have been synthesized via a facile hydrothermal method using sulfonated polystyrene beads as a template followed by a calcination process in air.X-ray diffraction,scanning electron microscopy,and transmission electron microscopy show that the as-obtained SnO2 hollow spheres have a wall thickness of about 50 nm,and consist of nanosized SnO2 particles with a mean diameter of about 15 nm.Electrochemical measurements indicate that the SnO2 hollow spheres exhibit improved electrochemical performance in terms of specific capacity and rate capability in comparison with commercial SnO2 when used as anode materials for lithium-ion batteries.The enhanced performance may be attributed to the spherical and hollow structure,as well as the building blocks of SnO2 nanoparticles.