In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr...In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles.展开更多
A moving-mass control method is introduced to stratospheric airship for its special working condition of low atmospheric density and low speed.The dynamic equation of airship is derived by using the Newton-Euler metho...A moving-mass control method is introduced to stratospheric airship for its special working condition of low atmospheric density and low speed.The dynamic equation of airship is derived by using the Newton-Euler method and the mechanism of attitude control by moving masses is studied.Then the passive gliding of airship by the moving masses is given based on the theory of glider,and attitude control capability between moving mass and elevator is compared at different airspeed.Analysis results show that the motion of masses changes the gravity center of the airship system,which makes the inertia tensor and the gravity moment vary.Meanwhile,the aerodynamic angles are generated,which results in the change of aerodynamic moment.Control efficiency of moving masses is independent of airspeed.Thus the moving-mass control has the advantage over the aerodynamic surfaces at low airspeed.展开更多
Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the au...Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.展开更多
Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive anal...Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defmed in the certification requirements. It is computationally prohibitive to use a GFEM (Global Finite Element Model) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of CMS (Component Mode Synthesis) method for the generation of high fidelity ROM (Reduced Order Model) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.展开更多
A numerical model of delta-wing type vortex generator was developed in two steps.The first step was to obtain a parameterized model of the shedding vortex based on delta-wing theory,which relates the geometry paramete...A numerical model of delta-wing type vortex generator was developed in two steps.The first step was to obtain a parameterized model of the shedding vortex based on delta-wing theory,which relates the geometry parameters and flow field parameters to the strength of shedding vortex which directly decides the source term.In the second step,a method was proposed to add source terms into the flow control equations so that the shedding vortex could be simulated numerically.As soon as the numerical model was completed,two cases:One for a plate and another for an airfoil segment were investigated for test.Comparison showed that the flow field structure and aerodynamic performance agreed well with those obtained from cases with real vortex generators.展开更多
The design of the re-entry space vehicles and high-speed aircraft structures requires special attention to the non-linear thermoelastic and aerodynamic instabilities.The thermal effects are important since temperature...The design of the re-entry space vehicles and high-speed aircraft structures requires special attention to the non-linear thermoelastic and aerodynamic instabilities.The thermal effects are important since temperature environment influences significantly the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes.The dynamic behavior of a double-wedge lifting surface with combined freeplay and cubic stiffening structural nonlinearities in both plunging and pitching degrees-of-freedom(DOF) operating in supersonic/hypersonic flight speed regimes has been analyzed.In addition a third order piston theory aerodynamics(PTA) is used to evaluate the non-linear unsteady aerodynamic loads applied to the wing section.Loss of torsional stiffness that may be incurred by lifting surfaces subjected to axial stresses induced by aerodynamic heating is also considered.The aerodynamic heating effect is estimated based on the adiabatic wall temperature due to high speed airstreams.It is demonstrated that serious losses of torsional stiffness may occur in such lifting surfaces;the influence of various parameters such as flight condition,thickness ratio,freeplays and pitching stiffness nonlinearity are discussed.展开更多
基金Project(51209167) supported by Youth Project of the National Natural Science Foundation of ChinaProject(2012JM8026) supported by Shaanxi Provincial Natural Science Foundation, China
文摘In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles.
基金Supported by the National Natural Science Foundation of China(No.61175074,11272205)
文摘A moving-mass control method is introduced to stratospheric airship for its special working condition of low atmospheric density and low speed.The dynamic equation of airship is derived by using the Newton-Euler method and the mechanism of attitude control by moving masses is studied.Then the passive gliding of airship by the moving masses is given based on the theory of glider,and attitude control capability between moving mass and elevator is compared at different airspeed.Analysis results show that the motion of masses changes the gravity center of the airship system,which makes the inertia tensor and the gravity moment vary.Meanwhile,the aerodynamic angles are generated,which results in the change of aerodynamic moment.Control efficiency of moving masses is independent of airspeed.Thus the moving-mass control has the advantage over the aerodynamic surfaces at low airspeed.
基金Project(gjd-09041)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.
文摘Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defmed in the certification requirements. It is computationally prohibitive to use a GFEM (Global Finite Element Model) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of CMS (Component Mode Synthesis) method for the generation of high fidelity ROM (Reduced Order Model) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.
基金supported by the National Natural Science Foundation of China(Grant Nos.50836006,50976117)
文摘A numerical model of delta-wing type vortex generator was developed in two steps.The first step was to obtain a parameterized model of the shedding vortex based on delta-wing theory,which relates the geometry parameters and flow field parameters to the strength of shedding vortex which directly decides the source term.In the second step,a method was proposed to add source terms into the flow control equations so that the shedding vortex could be simulated numerically.As soon as the numerical model was completed,two cases:One for a plate and another for an airfoil segment were investigated for test.Comparison showed that the flow field structure and aerodynamic performance agreed well with those obtained from cases with real vortex generators.
基金the China Post Doctor National Fund (No.AD4122,2008)
文摘The design of the re-entry space vehicles and high-speed aircraft structures requires special attention to the non-linear thermoelastic and aerodynamic instabilities.The thermal effects are important since temperature environment influences significantly the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes.The dynamic behavior of a double-wedge lifting surface with combined freeplay and cubic stiffening structural nonlinearities in both plunging and pitching degrees-of-freedom(DOF) operating in supersonic/hypersonic flight speed regimes has been analyzed.In addition a third order piston theory aerodynamics(PTA) is used to evaluate the non-linear unsteady aerodynamic loads applied to the wing section.Loss of torsional stiffness that may be incurred by lifting surfaces subjected to axial stresses induced by aerodynamic heating is also considered.The aerodynamic heating effect is estimated based on the adiabatic wall temperature due to high speed airstreams.It is demonstrated that serious losses of torsional stiffness may occur in such lifting surfaces;the influence of various parameters such as flight condition,thickness ratio,freeplays and pitching stiffness nonlinearity are discussed.