Penm an-M on te ith公式是在蒸散研究中应用最多,也是变化形式最多的方法,该文在对目前Penm an-M on te ith模型在森林下垫面中应用总结的基础上,阐述了其中众多参数的意义和常用的确定方法,着重探讨了影响该模型精确性的关键因子净辐...Penm an-M on te ith公式是在蒸散研究中应用最多,也是变化形式最多的方法,该文在对目前Penm an-M on te ith模型在森林下垫面中应用总结的基础上,阐述了其中众多参数的意义和常用的确定方法,着重探讨了影响该模型精确性的关键因子净辐射、空气动力学阻力和冠层阻力的计算方法,并分析了Penm an-M on te ith模型在实际应用中存在的一些问题,提出了该模型在今后森林蒸散研究中发展的思路。展开更多
The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was c...The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construction stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coefficient were decreased by the vehicles. The test resuh shows that the bridge railing and vehicles have much influence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge.展开更多
One of the main concerns in Engineering nowadays is the development of aircrafts of low consumption and high performance. For this purpose, airfoils are studied and designed to have an elevated lift coefficient and a ...One of the main concerns in Engineering nowadays is the development of aircrafts of low consumption and high performance. For this purpose, airfoils are studied and designed to have an elevated lift coefficient and a low drag coefficient, thus generating a highly efficient airfoil. The higher the efficiency value is, the lower the aircraft fuel consumption will be; thus improving its performance. In this sense, this work aims to develop a tool for airfoil creation from some desired characteristics, such as the lift and drag coefficients and maximum efficiency rate, using an algorithm based on an ANN (artificial neural network). In order to do so, a database of aerodynamic characteristics with a total of 300 airfoils was initially collected from the XFoil software. Then, through a routine implemented in the MATLAB software, network architectures of one, two, three and four modules were trained, using the back propagation algorithm and momentum. The cross-validation technique was applied to analyze the results, evaluating which network possesses the lowest value in RMS (root-mean-square) error. In this case, the best result obtained was from the two-module architecture with two hidden neuron layers. The airfoils developed by this network, in the regions with the lowest RMS, were compared to the same airfoils imported to XFoil. The presented work offers as a contribution, in relation to other works involving ANN applied to fluid mechanics, the development of airfoils from their aerodynamic characteristics.展开更多
With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train ...With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%.展开更多
In contrast to large horizontal axis wind turbines (HAWTs) that are located in areas dictated by optimum wind conditions, small wind turbines are required for producing power without necessarily the best wind conditio...In contrast to large horizontal axis wind turbines (HAWTs) that are located in areas dictated by optimum wind conditions, small wind turbines are required for producing power without necessarily the best wind conditions. A low Reynolds number airfoil was designed after testing a number of low Reynolds number airfoils and then making one of our own; it was tested for use in small HAWTs. Studies using XFOIL and wind tunnel experiments were performed on the new airfoil at various Reynolds numbers. The pressure distribution, C p , the lift and drag coefficients, C L and C D , were studied for varying angles of attack, α. It is found that the airfoil can achieve very good aerodynamic characteristics at different Reynolds numbers and can be used as an efficient airfoil in small HAWTs.展开更多
文摘Penm an-M on te ith公式是在蒸散研究中应用最多,也是变化形式最多的方法,该文在对目前Penm an-M on te ith模型在森林下垫面中应用总结的基础上,阐述了其中众多参数的意义和常用的确定方法,着重探讨了影响该模型精确性的关键因子净辐射、空气动力学阻力和冠层阻力的计算方法,并分析了Penm an-M on te ith模型在实际应用中存在的一些问题,提出了该模型在今后森林蒸散研究中发展的思路。
基金Sponsored by the Key Project of the National Natural Science Foundation of China (Grant No.90715039)
文摘The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construction stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coefficient were decreased by the vehicles. The test resuh shows that the bridge railing and vehicles have much influence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge.
文摘One of the main concerns in Engineering nowadays is the development of aircrafts of low consumption and high performance. For this purpose, airfoils are studied and designed to have an elevated lift coefficient and a low drag coefficient, thus generating a highly efficient airfoil. The higher the efficiency value is, the lower the aircraft fuel consumption will be; thus improving its performance. In this sense, this work aims to develop a tool for airfoil creation from some desired characteristics, such as the lift and drag coefficients and maximum efficiency rate, using an algorithm based on an ANN (artificial neural network). In order to do so, a database of aerodynamic characteristics with a total of 300 airfoils was initially collected from the XFoil software. Then, through a routine implemented in the MATLAB software, network architectures of one, two, three and four modules were trained, using the back propagation algorithm and momentum. The cross-validation technique was applied to analyze the results, evaluating which network possesses the lowest value in RMS (root-mean-square) error. In this case, the best result obtained was from the two-module architecture with two hidden neuron layers. The airfoils developed by this network, in the regions with the lowest RMS, were compared to the same airfoils imported to XFoil. The presented work offers as a contribution, in relation to other works involving ANN applied to fluid mechanics, the development of airfoils from their aerodynamic characteristics.
基金Project supported by the National Natural Science Foundation of China (No. 50823004)the National Key Technology R&D Program of China (No. 2009BAG12A01-C09)+1 种基金the 2013 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities, China
文摘With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%.
文摘In contrast to large horizontal axis wind turbines (HAWTs) that are located in areas dictated by optimum wind conditions, small wind turbines are required for producing power without necessarily the best wind conditions. A low Reynolds number airfoil was designed after testing a number of low Reynolds number airfoils and then making one of our own; it was tested for use in small HAWTs. Studies using XFOIL and wind tunnel experiments were performed on the new airfoil at various Reynolds numbers. The pressure distribution, C p , the lift and drag coefficients, C L and C D , were studied for varying angles of attack, α. It is found that the airfoil can achieve very good aerodynamic characteristics at different Reynolds numbers and can be used as an efficient airfoil in small HAWTs.