Pronounced aeroacoustic resonances are exhibited in the flow field where a jet emerges from an orifice or a nozzle and impinges on a solid surface. One instance where such resonances are produced is in a high speed je...Pronounced aeroacoustic resonances are exhibited in the flow field where a jet emerges from an orifice or a nozzle and impinges on a solid surface. One instance where such resonances are produced is in a high speed jet impingement, such as in the space launch vehicle systems, jet-engine exhaust impingement, and in the short take-off and vertical landing (STOVE) aircraft, etc. A highly unsteady flowfield leading to a drastic increase of noise level with very high dynamic pressure and thermal loads are noticed on nearby surfaces results dramatic lift loss, severe ground erosion and hot gas ingestion to the inlet in the jet engines. This highly unsteady behavior of the im- pinging jets is due to a feedback loop between the fluid and acoustic fields. In actual jet flow, the working gas may contain condensable gas such as steam or moist air. In these cases, the non-equilibrium condensation may occur at the region between nozzle exit and an object. The jet flow with non-equilibrium condensation may be quite different from that without condensation. Therefore, in this study, the effect of the non-equilibrium condensation of moist air on the axisymmetric under-expanded supersonic impinging jet on a vertical flat plate was investigated numerically.展开更多
Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combi...Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.展开更多
文摘Pronounced aeroacoustic resonances are exhibited in the flow field where a jet emerges from an orifice or a nozzle and impinges on a solid surface. One instance where such resonances are produced is in a high speed jet impingement, such as in the space launch vehicle systems, jet-engine exhaust impingement, and in the short take-off and vertical landing (STOVE) aircraft, etc. A highly unsteady flowfield leading to a drastic increase of noise level with very high dynamic pressure and thermal loads are noticed on nearby surfaces results dramatic lift loss, severe ground erosion and hot gas ingestion to the inlet in the jet engines. This highly unsteady behavior of the im- pinging jets is due to a feedback loop between the fluid and acoustic fields. In actual jet flow, the working gas may contain condensable gas such as steam or moist air. In these cases, the non-equilibrium condensation may occur at the region between nozzle exit and an object. The jet flow with non-equilibrium condensation may be quite different from that without condensation. Therefore, in this study, the effect of the non-equilibrium condensation of moist air on the axisymmetric under-expanded supersonic impinging jet on a vertical flat plate was investigated numerically.
文摘Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.