In this study, a three-dimensional mesoscale model was used to numerically simulate the well-known "98.7" heavy rainfall event that affected the Yangtze Valley in July 1998. Two experiments were conducted to...In this study, a three-dimensional mesoscale model was used to numerically simulate the well-known "98.7" heavy rainfall event that affected the Yangtze Valley in July 1998. Two experiments were conducted to analyze the impact of moist processes on the development of meso-β scale vortices(MβV) and their triggering by mesoscale wind perturbation(MWP). In the experiment in which the latent heat feedback(LHF) scheme was switched off, a stable low-level col field(i.e., saddle field—a region between two lows and two highs in the isobaric surface) formed, and the MWP triggered a weak MβV. However, when the LHF scheme was switched on as the MWP was introduced into the model, the MβV developed quickly and intense rainfall and a mesoscale low-level jet(mLLJ) were generated. The thickness of the air column and average temperature between 400 and 700 hPa decreased without the feedback of latent heat, whereas they increased quickly when the LHF scheme was switched on, with the air pressure falling at low levels but rising at upper levels. A schematic representation of the positive feedbacks among the mesoscale vortex, rainfall, and mLLJ shows that in the initial stage of the MβV, the MWP triggers light rainfall and the latent heat occurs at low levels, which leads to weak convergence and ageostrophic winds. In the mature stage of the MβV, convection extends to the middle-to-upper levels, resulting in an increase in the average temperature and a stretching of the air column. A low-level cyclonic circulation forms under the effect of Coriolis torque, and the m LLJ forms to the southeast of the MβV.展开更多
Based on sounding data from 1975 to 2005 and TM/ETM+ remote sensing images in 1989, 2001 and 2007, the climate changes in Harbin City, Northeast China in recent 30 years were analyzed and forecasted. Results show that...Based on sounding data from 1975 to 2005 and TM/ETM+ remote sensing images in 1989, 2001 and 2007, the climate changes in Harbin City, Northeast China in recent 30 years were analyzed and forecasted. Results show that in the lower troposphere the meridional wind speed and mean annual wind speed decrease, and in the lower stratosphere the temperature decreases while the meridional wind speed increases significantly. In the study area, the climate is becoming warmer and wetter in the middle lower troposphere. The expansion of urban area has great effects on the surface air temperature and the wind speed, leading to the increase of the surface air temperature, the decrease of the surface wind speed, and the increase of the area of urban high temperature zone. The quantitative equations have been established among the surface air temperature, the carbon dioxide (CO2) concentration and the specific humidity (the water vapor content). It is predicted that the future increasing rate of the surface air temperature is 0.85℃/10yr if emission concentration of CO2 remains unchanged; if emission concentration of CO2 decreases to 75%, 50% and 25%, respectively, the surface air temperature will increase 0.65℃/10yr, 0.46℃/10yr and 0.27℃/10yr, respectively. The rise of the surface air temperature in the study area is higher than that of the global mean temperature forecasted by IPCC.展开更多
To explore the energy saving effect of building envelope, the experiments were carried out through a comparison of basic cubicle in summer. Experiments show that if energy efficiency measures are applied only in the e...To explore the energy saving effect of building envelope, the experiments were carried out through a comparison of basic cubicle in summer. Experiments show that if energy efficiency measures are applied only in the external walls and windows, the energy saving cubicles have an average energy efficiency ratio of 27.75% and 27.05% when the air change rates are 1.1 and 1.4 h-1 in summer, with both values being over the standard target value by 25%. And the indoor air temperature of the energy saving cubicle is below that of the basic cubicle. The daily mean temperature difference between the interior surface of insulation wall and no insulation reaches 1.47℃, and the mean temperature difference is up to 8.52℃ between the interior surface and exterior surface of insulating glass and single glass. The two cubicles were simulated for energy consumption using VisualDOE4.0 software under real weather conditions in summer. The results show that the mean deviation is 10.02% between experimental and simulated energy efficiency ratio. The correctness and validity of simulation results of the VisualDOE4.0 software are proved.展开更多
This research reports on potentiality in the solar chimney as an exhaust ventilation device through a hypothetical statement that convenient weather conditions exist on sub-humid warm climate to enhance the performanc...This research reports on potentiality in the solar chimney as an exhaust ventilation device through a hypothetical statement that convenient weather conditions exist on sub-humid warm climate to enhance the performance ofa SC (solar chimney), in order to increase ventilation to dissipate metabolic heat from inhabitants of airtight buildings. The methodology used in this research integrates the use of simplified mathematical models that predict in a semi-empirical way a potential volume flow through estimation of kinetic power generation, by natural circulation and stack effect in a typical covered-plate air solar collector. The study was carried out during the warm month of April, an important warm season for Colima, where the prevailing wind is about 6.8 m/s, the average temperature of maximums and minimums oscillates between 15.4℃and 34.4 ℃ with average relative humidity of 65% according to national weather service. A scale model of the SC was installed on environmental chambers. The results showed that this device is capable of generating ventilation conditions around light breeze parameters near between 0.6 m/s and 1.5 m/s width, a better performance at day in 45% approximately than the night values, making ventilation rates up 0.24 ACH (air changes per hour) as average air change rate.展开更多
基金supported by the National Grand Fundamental Research 973 Program of China (Grant No.2015CB452800)the National Natural Science Foundation of China (Grant Nos.41275099,41205073 and 41275012)the Natural Science Foundation of the Nanjing Joint Center of Atmospheric Research (Grant No.NJCAR2016MS02)
文摘In this study, a three-dimensional mesoscale model was used to numerically simulate the well-known "98.7" heavy rainfall event that affected the Yangtze Valley in July 1998. Two experiments were conducted to analyze the impact of moist processes on the development of meso-β scale vortices(MβV) and their triggering by mesoscale wind perturbation(MWP). In the experiment in which the latent heat feedback(LHF) scheme was switched off, a stable low-level col field(i.e., saddle field—a region between two lows and two highs in the isobaric surface) formed, and the MWP triggered a weak MβV. However, when the LHF scheme was switched on as the MWP was introduced into the model, the MβV developed quickly and intense rainfall and a mesoscale low-level jet(mLLJ) were generated. The thickness of the air column and average temperature between 400 and 700 hPa decreased without the feedback of latent heat, whereas they increased quickly when the LHF scheme was switched on, with the air pressure falling at low levels but rising at upper levels. A schematic representation of the positive feedbacks among the mesoscale vortex, rainfall, and mLLJ shows that in the initial stage of the MβV, the MWP triggers light rainfall and the latent heat occurs at low levels, which leads to weak convergence and ageostrophic winds. In the mature stage of the MβV, convection extends to the middle-to-upper levels, resulting in an increase in the average temperature and a stretching of the air column. A low-level cyclonic circulation forms under the effect of Coriolis torque, and the m LLJ forms to the southeast of the MβV.
基金Under the auspices of Major State Basic Research Development Program of China (No. 2010CB950900)Technology Innovation Program of Harbin City (No. 2007RFXXS029)
文摘Based on sounding data from 1975 to 2005 and TM/ETM+ remote sensing images in 1989, 2001 and 2007, the climate changes in Harbin City, Northeast China in recent 30 years were analyzed and forecasted. Results show that in the lower troposphere the meridional wind speed and mean annual wind speed decrease, and in the lower stratosphere the temperature decreases while the meridional wind speed increases significantly. In the study area, the climate is becoming warmer and wetter in the middle lower troposphere. The expansion of urban area has great effects on the surface air temperature and the wind speed, leading to the increase of the surface air temperature, the decrease of the surface wind speed, and the increase of the area of urban high temperature zone. The quantitative equations have been established among the surface air temperature, the carbon dioxide (CO2) concentration and the specific humidity (the water vapor content). It is predicted that the future increasing rate of the surface air temperature is 0.85℃/10yr if emission concentration of CO2 remains unchanged; if emission concentration of CO2 decreases to 75%, 50% and 25%, respectively, the surface air temperature will increase 0.65℃/10yr, 0.46℃/10yr and 0.27℃/10yr, respectively. The rise of the surface air temperature in the study area is higher than that of the global mean temperature forecasted by IPCC.
基金Project(2006BAJ01A05) supported by National Science and Technology Pillar Program during the 11th Five-year Plan Period of China
文摘To explore the energy saving effect of building envelope, the experiments were carried out through a comparison of basic cubicle in summer. Experiments show that if energy efficiency measures are applied only in the external walls and windows, the energy saving cubicles have an average energy efficiency ratio of 27.75% and 27.05% when the air change rates are 1.1 and 1.4 h-1 in summer, with both values being over the standard target value by 25%. And the indoor air temperature of the energy saving cubicle is below that of the basic cubicle. The daily mean temperature difference between the interior surface of insulation wall and no insulation reaches 1.47℃, and the mean temperature difference is up to 8.52℃ between the interior surface and exterior surface of insulating glass and single glass. The two cubicles were simulated for energy consumption using VisualDOE4.0 software under real weather conditions in summer. The results show that the mean deviation is 10.02% between experimental and simulated energy efficiency ratio. The correctness and validity of simulation results of the VisualDOE4.0 software are proved.
文摘This research reports on potentiality in the solar chimney as an exhaust ventilation device through a hypothetical statement that convenient weather conditions exist on sub-humid warm climate to enhance the performance ofa SC (solar chimney), in order to increase ventilation to dissipate metabolic heat from inhabitants of airtight buildings. The methodology used in this research integrates the use of simplified mathematical models that predict in a semi-empirical way a potential volume flow through estimation of kinetic power generation, by natural circulation and stack effect in a typical covered-plate air solar collector. The study was carried out during the warm month of April, an important warm season for Colima, where the prevailing wind is about 6.8 m/s, the average temperature of maximums and minimums oscillates between 15.4℃and 34.4 ℃ with average relative humidity of 65% according to national weather service. A scale model of the SC was installed on environmental chambers. The results showed that this device is capable of generating ventilation conditions around light breeze parameters near between 0.6 m/s and 1.5 m/s width, a better performance at day in 45% approximately than the night values, making ventilation rates up 0.24 ACH (air changes per hour) as average air change rate.