Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use...Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.展开更多
Nowadays, many people work in an office environment. Air pollutants, including particles and gases, are generated by humans and by different devices that are used in offices. Pollutants can also enter an office room w...Nowadays, many people work in an office environment. Air pollutants, including particles and gases, are generated by humans and by different devices that are used in offices. Pollutants can also enter an office room with the air supplied from outdoors. It has been established that air pollutants have adverse health effects on human body. Air cleaning devices are commonly marketed as being beneficial for the health by removing air pollutants and consequently improving indoor air quality. The performance of five air cleaning technologies was tested in order to determine the generation of ozone and particles in an office room. The particle removal effectiveness of the technologies was also determined in order to clarify their ability to remove UFPs (ultrafine particles) in the office room. The tested five air cleaning technologies are non-thermal plasma, corona discharge ionizer, portable air purifier, electrostatic fibrous filter and three-dimensional fibrous filter. The interior surfaces of the office room emit low levels of volatile organic compounds, since the office room has not been refurbished for about two decades. The results showed that the particle removal effectiveness of the technologies was ranged between 0.2 and 0.45 for the office room. The three technologies using/generating ozone significantly increased the ozone level in the office room. However, no increase of the UFP concentration was detected.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(2015XZZX004-04)Zhejiang Provincial Natural Science Foundation(LR15B030001)~~
文摘Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.
文摘Nowadays, many people work in an office environment. Air pollutants, including particles and gases, are generated by humans and by different devices that are used in offices. Pollutants can also enter an office room with the air supplied from outdoors. It has been established that air pollutants have adverse health effects on human body. Air cleaning devices are commonly marketed as being beneficial for the health by removing air pollutants and consequently improving indoor air quality. The performance of five air cleaning technologies was tested in order to determine the generation of ozone and particles in an office room. The particle removal effectiveness of the technologies was also determined in order to clarify their ability to remove UFPs (ultrafine particles) in the office room. The tested five air cleaning technologies are non-thermal plasma, corona discharge ionizer, portable air purifier, electrostatic fibrous filter and three-dimensional fibrous filter. The interior surfaces of the office room emit low levels of volatile organic compounds, since the office room has not been refurbished for about two decades. The results showed that the particle removal effectiveness of the technologies was ranged between 0.2 and 0.45 for the office room. The three technologies using/generating ozone significantly increased the ozone level in the office room. However, no increase of the UFP concentration was detected.