The regional air quality modeling system Regional Atmospheric Modeling System–Community Multiscale Air Quality was applied to estimate the spatial distribution and seasonal variation in nitrogen wet deposition over E...The regional air quality modeling system Regional Atmospheric Modeling System–Community Multiscale Air Quality was applied to estimate the spatial distribution and seasonal variation in nitrogen wet deposition over East Asia in 2010. The simulated results were evaluated by comparing modeled precipitation rates and ion concentrations, such as ammonium(NH_4~+), nitrate(NO_3^-), and sulfate, in rainwater, against observations obtained from Acid Deposition Monitoring Network in East Asia and meteorological stations in China. Comparison of simulated and observed precipitation showed that the modeling system can reproduce seasonal precipitation patterns reasonably well. For major ion species, the simulated results in most cases were in good agreement with those observed. Analysis of the modeled wet deposition distributions indicated that China experiences noticeable variation in wet deposition patterns throughout the year. Nitrogen wet deposition(NH_4~+ + NO_3^-) during summer and spring accounted for 71% of the annual total(3.9 Tg N yr^(-1)), including 42.7% in summer. Precipitation plays a larger role in the seasonal variation of wet deposition; whereas, aerosol concentrations affect its distribution patterns. In China, the amount of annual nitrogen wet deposition ranged from 1 to 18 kg N ha^(-1). Nitrogen in wet deposition was mainly in the form of NH_4~+, accounting for 65.76% of the total amount, and the molar ratio of NH_4~+∕NO_3^- was mostly more than 1, indicating a relatively larger effect from agricultural activities.展开更多
Inhalation of 222Rn progeny in the domestic environment contributes the greatest fraction of the natural radiation exposure to the public. The ultrafine activity of these progeny amounts up to about l 0 percent of the...Inhalation of 222Rn progeny in the domestic environment contributes the greatest fraction of the natural radiation exposure to the public. The ultrafine activity of these progeny amounts up to about l 0 percent of the total activity (attached and ultrafine), but is considered to yield about 50 percent of the total radiation dose. Therefore, measurements of ultrafine fraction are essential for the estimation of radiation dose. The current study presents measured data on the total equilibrium equivalent concentration (EEC) and ultrafine equilibrium equivalent concentration (EECUn), ultrafine fraction (fb), attached and unattached activity size distributions of radon progeny in the low ventilated rooms at Minia University, Minia city, Egypt. A screen diffusion battery was used for collection the ultrafine fraction and measuring the total activity concentration of radon progeny. The attached activity size distribution of 214pb is determined by using a low pressure cascade impactor. The EEC of radon progeny varied between 1.3 and 18.9 Bq/m3 with a mean value of 5.2 ± 0.48 Bq/m2. The mean activity thermodynamic diameter (AMTD) ofultrafine of radon progeny was determined to be 1.26 nm with relative mean geometric standard deviations (GSD) of 1.3. The ultrafine fraction of radon progeny, fb, has a range 0.01 to 0.21 with an average of 0.08 ± 0.03. A relative mean GSD of 2.7 was determined for attached 2Lapb at a mean active median aerodynamic diameter (AMD) of 350 nm. Based on the above experimental results, the deposition fractions have been evaluated in each air way generation through the human lung by applying a lung deposition model. The bronchial deposition efficiencies of particles in the size range of attached radon progeny were found to be lower than those of ultrafine progeny. The effect of radon progeny deposition by adult male has been also studied for various levels of physical exertion. The dose conversion factor has been discussed as a function of fb.展开更多
Aerosol samples of PM10 (particulate matter with aerodynamic diameters less than 10μm) and TSP (total suspended particles) were simultaneously collected from April 2001 to March 2002 at the top of Mount Baguan on the...Aerosol samples of PM10 (particulate matter with aerodynamic diameters less than 10μm) and TSP (total suspended particles) were simultaneously collected from April 2001 to March 2002 at the top of Mount Baguan on the downtown campus of Ocean University of China, Qingdao, China. The concentrations of Al, Fe, Mn, Cu, Pb and Zn were determined by means of inductively coupled plasma atomic emission spectrometry (ICP-AES). The monthly variability of the mass concentrations of aerosol particles and the concentrations of trace metals are presented and discussed. The distribution pattern of these metals in PM10 and TSP is also discussed. During the observation period, the mass concentration of PM10 at this site ranged from 13.80 to 306.42μgm-3 , while that of TSP ranged from 31.02 to 568.82μgm-3. Both PM10 and TSP reached their highest concentrations in springtime, while the lowest values occurred in summertime. The concentrations of crustal metals followed the same variation pattern, while those of anthropogenic metals did not. A closer examination led to the conclusion that anthropogenic metals are mainly from local sources. The average concentration ratios of anthropogenic metals in PM10 to TSP were higher than the average mass ratio of PM10 to TSP, suggesting that there was a higher proportion of anthropogenic metals on smaller particles although there were a few exceptions. For crustal metals, however, the metal concentration ratios were close to the particle mass ratio, indicating that the distribution of crustal metals was much more homogeneous on aerosol particles with different sizes. The correlation analysis indicated that Al, Fe and Mn were originated from similar sources and were mainly controlled by the particle mass, while Cu, Pb and Zn were predominated by local anthropogenic sources, with Pb and Zn having similar origins.展开更多
Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different ro...Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different routes of KCl solution droplets. In traditional generators, the solution droplets travel through one cylinder; while in the case analyzed here, after spray atomization, the droplets travel through two cylinders in series. The first cylinder was fed with warm air and the second one with cold air. In such way, the complete evaporation of the water from the droplets can be ensured. The influencing factors of the generated aerosol size distribution were investigated. The data measured show that the concentration of generated aerosol becomes higher both increasing the flow rate of the KCI solution injected in the first cylinder and increasing the concentration in the solution. The temperature of solution influences mainly the generation of smaller KCI particles (0,3-3 μm). The amount of hot air used in the generation process increases the concentration of larger KC1 particles (〉3 μm) while cold air does not have the same effect. The aerosol generator is able to generate KC1 aerosol stably. This instrument can be used effectively for testing air filters for automotive.展开更多
Black carbon (BC) aerosol, accounting for a minor fraction of atmospheric aerosols, is attracting increased attentio1 due to its impact on air quality, human health, and climate change. Focusing on BC emission reduc...Black carbon (BC) aerosol, accounting for a minor fraction of atmospheric aerosols, is attracting increased attentio1 due to its impact on air quality, human health, and climate change. Focusing on BC emission reduction, this paper give1 a brief introduction to the sources and global distribution of BC. Along with the decrease of BC emissions from sue1 actions as the reduction of global greenhouse gases (GHGs) and regulating local air quality, it also highlights othet BC reduction approaches such as control and improvement of combustion conditions, the elimination of open biomas burning, and the sequestration of BC by biomass pyrolysis. Finally, it is stressed that at this moment there is no enougt reason to push BC reduction into any climate change related negotiations, although BC has been included in some o so-called win-win reduction targets for the quick response to both climate and non-climate appeals.展开更多
The Greater Casablanca, like the other large cities, has experienced significant urban and industrial development in recent years, this development has certainly helped develop the productive fabric, generate signific...The Greater Casablanca, like the other large cities, has experienced significant urban and industrial development in recent years, this development has certainly helped develop the productive fabric, generate significant employment opportunities for hundreds of thousands of families, but at the expense of the mobility and quality of the environment particularly those of the air. The deterioration of the air quality affects more and more the population's health with significant cost and damage to the community, this study aims to quantify the degree of aerosols pollution damage and also its health effects.展开更多
The seasonal transport of the Saharan dust to the West African region, near the Gulf of Guinea, during northem winter has been studied over 12 years. Using an optical particle counter, the dust aerosols in the diamete...The seasonal transport of the Saharan dust to the West African region, near the Gulf of Guinea, during northem winter has been studied over 12 years. Using an optical particle counter, the dust aerosols in the diameter range 0.5-25 μm have been sampled at Kumasi (6040' N, l°34' W) in Ghana during the winter months of January-February from 1997 to 2009. The settling atmospheric dust particles observed during the peak Harmattan and the background Harmattan periods are analysed for the mean particle size, number and mass concentrations as well as the particle size-frequency. It is shown that the average daily particle diameter, number and mass concentrations obtained in the peak Harmattan periods are 1.57 ± 0.54 μm, 50 ± 25 particles/cm3 and 1,130 ± 994 μg/m3, respectively, while for the background Harmattan these values are correspondingly, 1.31 ±0.31 μm, 32 ±12 particles/cm3 and 576 ±429 μg/m3, respectively. These experimental results will be useful for the design of ambient air-filters and for understanding the West African climate change.展开更多
The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). T...The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2 1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than 25 and 20 W m 2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January The DF could obviously be impacted by high cloud fractions.展开更多
The concentration of absorbable particulate matter less than 10 μm termed as PM10 is the most important urban air pollution index for air quality monitoring. This paper presents a space based PM10 monitoring algorith...The concentration of absorbable particulate matter less than 10 μm termed as PM10 is the most important urban air pollution index for air quality monitoring. This paper presents a space based PM10 monitoring algorithm based on QUAC (QUick atmosphere correction) for optical remote sensing data and SVR (support vector regression). PM 10 concentration measurements from nine ground based stations in Hangzhou, China and the MODIS (moderate-resolution imaging spectroradiometer) images were analyzed. Experimental result indicates that the correlation between CD (correction differences) with actual measured data is better than correlation between AOD (aerosol optical depth) with measured data. In addition, the fitting performance of the SVR model established with CD and measured data is better than traditional regression models.展开更多
基金supported by the National Basic Research Program of China[grant number 2014CB953802]the "Strategic Priority Research Program(B)" of the Chinese Academy of Sciences[grant numbers XDB05030105,XDB05030102,and XDB05030103]
文摘The regional air quality modeling system Regional Atmospheric Modeling System–Community Multiscale Air Quality was applied to estimate the spatial distribution and seasonal variation in nitrogen wet deposition over East Asia in 2010. The simulated results were evaluated by comparing modeled precipitation rates and ion concentrations, such as ammonium(NH_4~+), nitrate(NO_3^-), and sulfate, in rainwater, against observations obtained from Acid Deposition Monitoring Network in East Asia and meteorological stations in China. Comparison of simulated and observed precipitation showed that the modeling system can reproduce seasonal precipitation patterns reasonably well. For major ion species, the simulated results in most cases were in good agreement with those observed. Analysis of the modeled wet deposition distributions indicated that China experiences noticeable variation in wet deposition patterns throughout the year. Nitrogen wet deposition(NH_4~+ + NO_3^-) during summer and spring accounted for 71% of the annual total(3.9 Tg N yr^(-1)), including 42.7% in summer. Precipitation plays a larger role in the seasonal variation of wet deposition; whereas, aerosol concentrations affect its distribution patterns. In China, the amount of annual nitrogen wet deposition ranged from 1 to 18 kg N ha^(-1). Nitrogen in wet deposition was mainly in the form of NH_4~+, accounting for 65.76% of the total amount, and the molar ratio of NH_4~+∕NO_3^- was mostly more than 1, indicating a relatively larger effect from agricultural activities.
文摘Inhalation of 222Rn progeny in the domestic environment contributes the greatest fraction of the natural radiation exposure to the public. The ultrafine activity of these progeny amounts up to about l 0 percent of the total activity (attached and ultrafine), but is considered to yield about 50 percent of the total radiation dose. Therefore, measurements of ultrafine fraction are essential for the estimation of radiation dose. The current study presents measured data on the total equilibrium equivalent concentration (EEC) and ultrafine equilibrium equivalent concentration (EECUn), ultrafine fraction (fb), attached and unattached activity size distributions of radon progeny in the low ventilated rooms at Minia University, Minia city, Egypt. A screen diffusion battery was used for collection the ultrafine fraction and measuring the total activity concentration of radon progeny. The attached activity size distribution of 214pb is determined by using a low pressure cascade impactor. The EEC of radon progeny varied between 1.3 and 18.9 Bq/m3 with a mean value of 5.2 ± 0.48 Bq/m2. The mean activity thermodynamic diameter (AMTD) ofultrafine of radon progeny was determined to be 1.26 nm with relative mean geometric standard deviations (GSD) of 1.3. The ultrafine fraction of radon progeny, fb, has a range 0.01 to 0.21 with an average of 0.08 ± 0.03. A relative mean GSD of 2.7 was determined for attached 2Lapb at a mean active median aerodynamic diameter (AMD) of 350 nm. Based on the above experimental results, the deposition fractions have been evaluated in each air way generation through the human lung by applying a lung deposition model. The bronchial deposition efficiencies of particles in the size range of attached radon progeny were found to be lower than those of ultrafine progeny. The effect of radon progeny deposition by adult male has been also studied for various levels of physical exertion. The dose conversion factor has been discussed as a function of fb.
基金supported by the National Natural Science Foundation of China(Grant No.49976020).
文摘Aerosol samples of PM10 (particulate matter with aerodynamic diameters less than 10μm) and TSP (total suspended particles) were simultaneously collected from April 2001 to March 2002 at the top of Mount Baguan on the downtown campus of Ocean University of China, Qingdao, China. The concentrations of Al, Fe, Mn, Cu, Pb and Zn were determined by means of inductively coupled plasma atomic emission spectrometry (ICP-AES). The monthly variability of the mass concentrations of aerosol particles and the concentrations of trace metals are presented and discussed. The distribution pattern of these metals in PM10 and TSP is also discussed. During the observation period, the mass concentration of PM10 at this site ranged from 13.80 to 306.42μgm-3 , while that of TSP ranged from 31.02 to 568.82μgm-3. Both PM10 and TSP reached their highest concentrations in springtime, while the lowest values occurred in summertime. The concentrations of crustal metals followed the same variation pattern, while those of anthropogenic metals did not. A closer examination led to the conclusion that anthropogenic metals are mainly from local sources. The average concentration ratios of anthropogenic metals in PM10 to TSP were higher than the average mass ratio of PM10 to TSP, suggesting that there was a higher proportion of anthropogenic metals on smaller particles although there were a few exceptions. For crustal metals, however, the metal concentration ratios were close to the particle mass ratio, indicating that the distribution of crustal metals was much more homogeneous on aerosol particles with different sizes. The correlation analysis indicated that Al, Fe and Mn were originated from similar sources and were mainly controlled by the particle mass, while Cu, Pb and Zn were predominated by local anthropogenic sources, with Pb and Zn having similar origins.
基金Project(2010EME006) supported by Open Fund of the Key Laboratory of Environmental Medicine Engineering of Ministry of Education of China Project(51008063) supported by the National Natural Science Foundation of China+1 种基金 Project(3203000601) supported by the Postdoctoral Key Research Program from Southeast University, China Project(2011BAJ03B05) supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan Period of China
文摘Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated, Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different routes of KCl solution droplets. In traditional generators, the solution droplets travel through one cylinder; while in the case analyzed here, after spray atomization, the droplets travel through two cylinders in series. The first cylinder was fed with warm air and the second one with cold air. In such way, the complete evaporation of the water from the droplets can be ensured. The influencing factors of the generated aerosol size distribution were investigated. The data measured show that the concentration of generated aerosol becomes higher both increasing the flow rate of the KCI solution injected in the first cylinder and increasing the concentration in the solution. The temperature of solution influences mainly the generation of smaller KCI particles (0,3-3 μm). The amount of hot air used in the generation process increases the concentration of larger KC1 particles (〉3 μm) while cold air does not have the same effect. The aerosol generator is able to generate KC1 aerosol stably. This instrument can be used effectively for testing air filters for automotive.
基金co-supported by China 973 project of MOST(2011CB403401)China Postdoctoral Science Foundation(20080440463,200902157)
文摘Black carbon (BC) aerosol, accounting for a minor fraction of atmospheric aerosols, is attracting increased attentio1 due to its impact on air quality, human health, and climate change. Focusing on BC emission reduction, this paper give1 a brief introduction to the sources and global distribution of BC. Along with the decrease of BC emissions from sue1 actions as the reduction of global greenhouse gases (GHGs) and regulating local air quality, it also highlights othet BC reduction approaches such as control and improvement of combustion conditions, the elimination of open biomas burning, and the sequestration of BC by biomass pyrolysis. Finally, it is stressed that at this moment there is no enougt reason to push BC reduction into any climate change related negotiations, although BC has been included in some o so-called win-win reduction targets for the quick response to both climate and non-climate appeals.
文摘The Greater Casablanca, like the other large cities, has experienced significant urban and industrial development in recent years, this development has certainly helped develop the productive fabric, generate significant employment opportunities for hundreds of thousands of families, but at the expense of the mobility and quality of the environment particularly those of the air. The deterioration of the air quality affects more and more the population's health with significant cost and damage to the community, this study aims to quantify the degree of aerosols pollution damage and also its health effects.
文摘The seasonal transport of the Saharan dust to the West African region, near the Gulf of Guinea, during northem winter has been studied over 12 years. Using an optical particle counter, the dust aerosols in the diameter range 0.5-25 μm have been sampled at Kumasi (6040' N, l°34' W) in Ghana during the winter months of January-February from 1997 to 2009. The settling atmospheric dust particles observed during the peak Harmattan and the background Harmattan periods are analysed for the mean particle size, number and mass concentrations as well as the particle size-frequency. It is shown that the average daily particle diameter, number and mass concentrations obtained in the peak Harmattan periods are 1.57 ± 0.54 μm, 50 ± 25 particles/cm3 and 1,130 ± 994 μg/m3, respectively, while for the background Harmattan these values are correspondingly, 1.31 ±0.31 μm, 32 ±12 particles/cm3 and 576 ±429 μg/m3, respectively. These experimental results will be useful for the design of ambient air-filters and for understanding the West African climate change.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-Q11-04)the National Basic research Program of China (2006CB403702 and 2007CB407303)
文摘The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2 1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than 25 and 20 W m 2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January The DF could obviously be impacted by high cloud fractions.
文摘The concentration of absorbable particulate matter less than 10 μm termed as PM10 is the most important urban air pollution index for air quality monitoring. This paper presents a space based PM10 monitoring algorithm based on QUAC (QUick atmosphere correction) for optical remote sensing data and SVR (support vector regression). PM 10 concentration measurements from nine ground based stations in Hangzhou, China and the MODIS (moderate-resolution imaging spectroradiometer) images were analyzed. Experimental result indicates that the correlation between CD (correction differences) with actual measured data is better than correlation between AOD (aerosol optical depth) with measured data. In addition, the fitting performance of the SVR model established with CD and measured data is better than traditional regression models.