Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the...Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the practical application remains a challenge.The main obstacles are the intrinsic slow reaction kinetics on air cathodes,including oxygen reduction reaction during the discharging process and oxygen evolution reaction during the recharging process.Searching for efficient bifunctional oxygen electrocatalysts is key to solve these problems.In this review,the configuration and fundamental oxygen electrochemical reactions on air cathodes are briefly introduced for Zn-air batteries first.Then,the latest bifunctional oxygen electrocatalysts are summarized in detail.Finally,the perspectives are provided for the future investigations on bifunctional oxygen electrocatalysts.展开更多
A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the...A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the high catalytic activity of nitrides and the high-efficiency mass transfer characteristics of NHPCS.The oxygen reduction reaction results indicate that Fe2N/NHPCS has the synergistic catalytic performance of higher onset potential(0.96 V),higher electron transfer number(~4)and higher limited current density(1.4 times as high as that of commercial Pt/C).In addition,this material is implemented as the air catalyst for zinc−air battery that exhibits considerable specific capacity(795.1 mA·h/g)comparable to that of Pt/C,higher durability and maximum power density(173.1 mW/cm2).展开更多
The influences of kinds and level of catalyst, time of decomposition reaction on the distribution of dibasic acid and apparent yield of adipic acid were researched; the acidic washing waste water (BI waste water) pr...The influences of kinds and level of catalyst, time of decomposition reaction on the distribution of dibasic acid and apparent yield of adipic acid were researched; the acidic washing waste water (BI waste water) producing from the equipment of cyclohexane oxidation by air was as stuff, the component of products by decomposed and oxidated in different conditions were analysed. It indicated that in the presence of cobalt salt the apparent yield of adipic acid was upto 10%-12% for the total BI waste water after the concentrated BI waste water refluxed for two hours, and then oxidated by nitric acid.展开更多
On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for m...On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for making syngas via catalytic partial oxidation (CPO) of methane by air. The effects of various operating conditions such as operating pressure and temperature, feed composition, and gas flowrate etc. on the CPO process were investigated. CH4 conversion of 92.2% and selectivity of 92.3% and 83.3% to CO and H2, respectively, were achieved at the pressure of 2.1 MPa. It was found that when the spouted bed reactor was operated within the stable spouting flow regime, the temperature profiles along the bed axis were much more uniform than those operated within the fixed-bed regime. The CH4 conversion and syngas selectivity were found to be close to thermodynamic equilibrium limits. The results of the present investigation showed that spouted bed could be considered as a potential type of chemical reactor for the CPO process of methane.展开更多
Coal gangue was calcinated under air, nitrogen, carbon dioxide, air-hydrogen, and hydrogen atmospheres. The effects of different calcination temperatures and atmospheres on the mineral composition of activated coal ga...Coal gangue was calcinated under air, nitrogen, carbon dioxide, air-hydrogen, and hydrogen atmospheres. The effects of different calcination temperatures and atmospheres on the mineral composition of activated coal gangue were investigated by X-ray diffraction. Moreover, the acid leaching kinetics of aluminum oxide from coal gangue was investigated with sulfuric acid. It showed that the air atmosphere promoted kaolinite decomposition during coal gangue calcination. The hydrogen atmosphere promoted the activation and decomposition of kaolinite at reaction temperatures exceeding 650℃. The carbon dioxide atmosphere eliminated the influence of residual carbon on coal gangue. When the ratio of acid/coal gangue was 1.5 and reaction temperature was 650℃, the sulfuric acid leaching rate under air, air-hydrogen, carbon dioxide, hydrogen and nitrogen atmospheres were 93.66%, 90.90%, 84.06%, 81.91% and 77.54% respectively. The acid leaching reaction process conformed to unreacted shrinking core model of particle unchanged, and was controlled by the interracial chemical reaction. The reaction kinetic equation for the leaching process was 1-(1-x)1/3=kt with an apparent activation energy of 48.97 kJ/mol.展开更多
基金supported by the National Natural Science Foundation of China NSFC(51702166)Tianjin Municipal Science and Technology Bureau(17JCZDJC37100)~~
文摘Zn-air batteries have attracted extensive attention for their unique features including high energy density,safety,low cost and environmental friendliness.However,due to their poor chargeability and low efficiency,the practical application remains a challenge.The main obstacles are the intrinsic slow reaction kinetics on air cathodes,including oxygen reduction reaction during the discharging process and oxygen evolution reaction during the recharging process.Searching for efficient bifunctional oxygen electrocatalysts is key to solve these problems.In this review,the configuration and fundamental oxygen electrochemical reactions on air cathodes are briefly introduced for Zn-air batteries first.Then,the latest bifunctional oxygen electrocatalysts are summarized in detail.Finally,the perspectives are provided for the future investigations on bifunctional oxygen electrocatalysts.
基金the National Natural Science Foundation of China(Nos.51702137,51802128)the Natural Science Foundation of Jiangsu Province,China(No.BK20181013)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(No.18KJB430013)the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering,China(No.2020-KF-20).
文摘A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the high catalytic activity of nitrides and the high-efficiency mass transfer characteristics of NHPCS.The oxygen reduction reaction results indicate that Fe2N/NHPCS has the synergistic catalytic performance of higher onset potential(0.96 V),higher electron transfer number(~4)and higher limited current density(1.4 times as high as that of commercial Pt/C).In addition,this material is implemented as the air catalyst for zinc−air battery that exhibits considerable specific capacity(795.1 mA·h/g)comparable to that of Pt/C,higher durability and maximum power density(173.1 mW/cm2).
文摘The influences of kinds and level of catalyst, time of decomposition reaction on the distribution of dibasic acid and apparent yield of adipic acid were researched; the acidic washing waste water (BI waste water) producing from the equipment of cyclohexane oxidation by air was as stuff, the component of products by decomposed and oxidated in different conditions were analysed. It indicated that in the presence of cobalt salt the apparent yield of adipic acid was upto 10%-12% for the total BI waste water after the concentrated BI waste water refluxed for two hours, and then oxidated by nitric acid.
基金Supported by the Doctorate Discipline Foundation of the Ministry of Education of China(No.2000042053)& China National Petroleum Co
文摘On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for making syngas via catalytic partial oxidation (CPO) of methane by air. The effects of various operating conditions such as operating pressure and temperature, feed composition, and gas flowrate etc. on the CPO process were investigated. CH4 conversion of 92.2% and selectivity of 92.3% and 83.3% to CO and H2, respectively, were achieved at the pressure of 2.1 MPa. It was found that when the spouted bed reactor was operated within the stable spouting flow regime, the temperature profiles along the bed axis were much more uniform than those operated within the fixed-bed regime. The CH4 conversion and syngas selectivity were found to be close to thermodynamic equilibrium limits. The results of the present investigation showed that spouted bed could be considered as a potential type of chemical reactor for the CPO process of methane.
基金supported by National Natural Science Foundation of China(51074170)Shaanxi Key Technology R&D Program(2016GY-147)+1 种基金Key Laboratory of Coal Resources Exploration and Comprehensive UtilizationMinistry of Land and Resources Open Research Topic(KF2016-3)
文摘Coal gangue was calcinated under air, nitrogen, carbon dioxide, air-hydrogen, and hydrogen atmospheres. The effects of different calcination temperatures and atmospheres on the mineral composition of activated coal gangue were investigated by X-ray diffraction. Moreover, the acid leaching kinetics of aluminum oxide from coal gangue was investigated with sulfuric acid. It showed that the air atmosphere promoted kaolinite decomposition during coal gangue calcination. The hydrogen atmosphere promoted the activation and decomposition of kaolinite at reaction temperatures exceeding 650℃. The carbon dioxide atmosphere eliminated the influence of residual carbon on coal gangue. When the ratio of acid/coal gangue was 1.5 and reaction temperature was 650℃, the sulfuric acid leaching rate under air, air-hydrogen, carbon dioxide, hydrogen and nitrogen atmospheres were 93.66%, 90.90%, 84.06%, 81.91% and 77.54% respectively. The acid leaching reaction process conformed to unreacted shrinking core model of particle unchanged, and was controlled by the interracial chemical reaction. The reaction kinetic equation for the leaching process was 1-(1-x)1/3=kt with an apparent activation energy of 48.97 kJ/mol.