通过导弹/发动机一体化设计的计算,验证了SPATR发动机在先进火力支援系统(AFSS—Advanced Fire SupportSystem)中的可用性。利用飞航导弹/涡扇发动机一体化设计思路,建立了AFSS/SPATR发动机一体化设计的约束分析和任务分析模型,并给出...通过导弹/发动机一体化设计的计算,验证了SPATR发动机在先进火力支援系统(AFSS—Advanced Fire SupportSystem)中的可用性。利用飞航导弹/涡扇发动机一体化设计思路,建立了AFSS/SPATR发动机一体化设计的约束分析和任务分析模型,并给出了算例和分析。简述了AFSS任务剖面和约束条件的给定、导弹的质量组成及SPATR发动机模型。对AFSS的约束分析和任务分析计算结果表明,建立的AFSS/SPATR发动机一体化约束分析与任务分析模型合理可行;采用SPATR的AFSS具有超音速飞行能力(H=3~5 km,Ma=1.8),比采用固体火箭发动机的导弹航程更远,并具有盘旋待机能力。展开更多
文摘通过导弹/发动机一体化设计的计算,验证了SPATR发动机在先进火力支援系统(AFSS—Advanced Fire SupportSystem)中的可用性。利用飞航导弹/涡扇发动机一体化设计思路,建立了AFSS/SPATR发动机一体化设计的约束分析和任务分析模型,并给出了算例和分析。简述了AFSS任务剖面和约束条件的给定、导弹的质量组成及SPATR发动机模型。对AFSS的约束分析和任务分析计算结果表明,建立的AFSS/SPATR发动机一体化约束分析与任务分析模型合理可行;采用SPATR的AFSS具有超音速飞行能力(H=3~5 km,Ma=1.8),比采用固体火箭发动机的导弹航程更远,并具有盘旋待机能力。