期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Ka/Ku双波段云雷达探测云降水滴谱和空气垂直运动速度的能力模拟分析 被引量:10
1
作者 郑晨雨 刘黎平 《高原气象》 CSCD 北大核心 2020年第3期543-559,共17页
由于湍流、雷达探测灵敏度等对单波长云雷达探测回波强度谱密度的影响,造成了云雷达探测空气垂直运动速度和雨滴谱的误差,而双波长云雷达利用Mie散射造成的不同粒子后向散射大小差异来提高空气上升速度探测精度,从而提高反演雨滴谱的能... 由于湍流、雷达探测灵敏度等对单波长云雷达探测回波强度谱密度的影响,造成了云雷达探测空气垂直运动速度和雨滴谱的误差,而双波长云雷达利用Mie散射造成的不同粒子后向散射大小差异来提高空气上升速度探测精度,从而提高反演雨滴谱的能力,并且可提高订正雨区衰减的能力。为此中国气象科学研究院研发了Ka/Ku双波段云雷达,并于2019年4月开始在广东龙门进行了云降水观测。本文针对该双波段云雷达观测模式和灵敏度等参数,在Gamma滴谱假设条件下,模拟分析了Ka、Ku波段功率谱及其比值与云降水参数、温度和湍流的关系,研究了雷达灵敏度、湍流对空气垂直速度、雨滴谱反演和衰减订正的影响,并利用个例数据进行了风场反演试验,讨论了双波段探测微降水动力和微物理参数的优势。结果表明:(1)温度只能影响两个波段功率谱比值(Ratio)的大小,对其峰值位置基本没有影响,而湍流对其峰值位置的影响不超过0.5 m·s^-1;(2)湍流、雷达灵敏度对单波段云雷达探测空气垂直速度的影响比较明显,湍流使空气上升速度被高估,雷达最小可测回波强度随高度的增加而增加使该参数被低估,其影响远远大于温度和湍流对双波段云雷达反演空气垂直速度的影响;(3)对于单波段雷达来说,雷达灵敏度和湍流明显影响雨滴谱、含水量和衰减系数的探测,湍流使得雨滴谱拓宽,低估含水量和衰减系数;而雷达灵敏度却使反演的雨滴谱变窄,增加小粒子数浓度,并高估了含水量和衰减系数;(4)选取2019年4月15^-16日的个例进行空气上升速度的反演,并与模拟分析的结果进行对比。结果显示实际观测数据反演的空气上升速度与模拟分析结果中的趋势较为一致。这项工作为单波段和双波段云雷达的多普勒功率谱数据分析和云降水微物理和动力参数的反演可提供参考。 展开更多
关键词 双波段云雷达 空气运动速度 雨滴谱 雷达灵敏度 湍流
下载PDF
An Analysis on the Motion Characteristics of Fuel and Shell in Launching
2
作者 闫华 张奇 白春华 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期401-404,共4页
The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the f... The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the fuel and shell of the warhead, but also in the fuel in different positions. The result of study indicates that the position of the fuel in the warhead has a marked influence on the relative motion, while the frictional coefficient between the fuel and shell has less influence upon it. 展开更多
关键词 fuel air explosive relative motion LAUNCHING WARHEAD angular velocity
全文增补中
Research on characteristics of water motion and influencing factors for the flexible air chamber jig body 被引量:1
3
作者 Chen Yinghua Kuang Yali Li Haisheng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期389-394,共6页
The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure mode... The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags. 展开更多
关键词 Flexible air chamber jig Water motion Numerical simulation Screen location Number of air bags
下载PDF
Modeling of Bubble Motion in Two Dimensional Space
4
作者 Dinesh Khattar Bidhu Bhushan Chakraborty Seema Bansal 《Journal of Energy and Power Engineering》 2012年第12期1945-1951,共7页
The equations of motion of a bubble, expanding adiabatically through an incompressible viscous fluid, are deduced when the centre of the bubble moves in a vertical plane in the presence of gravitational acceleration, ... The equations of motion of a bubble, expanding adiabatically through an incompressible viscous fluid, are deduced when the centre of the bubble moves in a vertical plane in the presence of gravitational acceleration, acting vertically downwards. The non-linear equations of motion obtained are solved numerically for different values of the various parameters of the problem. The path traced by the centre of the bubble and velocity of the centre, the change of radius R with time, and the influence of the buoyancy force, which is experienced by the expanding bubble for different values of the gravitational acceleration on these quantities, are investigated. The radius R(t) of the bubble is found to vary periodically with time when the acceleration due to gravity is small. But when the acceleration due to gravity increases, this periodicity in the value of R(t) with t is lost. The influence of viscosity in determining the periodicity of the bubble motion is also investigated. 展开更多
关键词 BUBBLE incompressible fluid VISCOUS BUOYANCY gravity.
下载PDF
Multi-objective optimization design method of the high-speed train head 被引量:22
5
作者 Meng-ge YU Ji-ye ZHANG Wei-hua ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期631-641,共11页
With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train ... With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%. 展开更多
关键词 High-speed train Multi-objective optimization Parametric model Aerodynamic drag Load reduction factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部