In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal anne...In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal annealing(RTA).The characterizations show that the epitaxial SiGe thin films are single-crystalline with uniform tensile strain and then become polycrystalline after the ion implantation and following RTA.The magnetization measurements indicate that the annealed thin films exhibit Mn concentration-dependent ferromagnetism up to 309 K and the X-ray magnetic circular dichroism characterizations reveal the spin and orbital magnetic moments from the substitutional Mn element.To minimize the influence of anomalous Hall effect,magneto-transport measurements at a high magnetic field up to 31 T at 300 K are performed to obtain the hole mobility,which reaches a record-high value of~1230 cm^(2)V^(-1)s^(-1),owing to the crystalline quality and tensile strain-induced energy band modulation of the samples.The first demonstration of Mn-doped SiGe thin films with roomtemperature ferromagnetism and high carrier mobility may pave the way for practical semiconductor spintronic applications.展开更多
基金supported by the National Key Research and Development Program of China(2017YFB0405702)the National Natural Science Foundation of China(52172272)。
文摘In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal annealing(RTA).The characterizations show that the epitaxial SiGe thin films are single-crystalline with uniform tensile strain and then become polycrystalline after the ion implantation and following RTA.The magnetization measurements indicate that the annealed thin films exhibit Mn concentration-dependent ferromagnetism up to 309 K and the X-ray magnetic circular dichroism characterizations reveal the spin and orbital magnetic moments from the substitutional Mn element.To minimize the influence of anomalous Hall effect,magneto-transport measurements at a high magnetic field up to 31 T at 300 K are performed to obtain the hole mobility,which reaches a record-high value of~1230 cm^(2)V^(-1)s^(-1),owing to the crystalline quality and tensile strain-induced energy band modulation of the samples.The first demonstration of Mn-doped SiGe thin films with roomtemperature ferromagnetism and high carrier mobility may pave the way for practical semiconductor spintronic applications.