The research conducted prediction on changes of atmosphere pollution during July 9, 2014-July 22, 2014 with SPSS based on monitored data of O3 in 13 successive weeks from 6 sites in Baoding City and demonstrated predi...The research conducted prediction on changes of atmosphere pollution during July 9, 2014-July 22, 2014 with SPSS based on monitored data of O3 in 13 successive weeks from 6 sites in Baoding City and demonstrated prediction effect of ARIMA model is good by Ljung-Box Q-test and R2, and the model can be used for prediction on future atmosphere pollutant changes.展开更多
Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and ...Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.展开更多
A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hol...A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hollow fiber membrane prepared at air gap zero has no skin layer; the pore size near the outer surface is larger than that near the inner surface; and the special pore channel-like structure near the outer surface is formed,which is quite different with the typical sponge-like structure caused by TIPS and the finger-like structure caused by non-solvent induced phase separation(NIPS),because of the synergistic action of non-solvent induced phase separation at air gap zero.The pore size gradually decreases from outer surface layer to the intermediate layer,but increases gradually from intermediate layer to the inner surface layer.With the increase of air gap distance,the pore size near the outer surface gets smaller and a dense skin layer is formed,and the pore size gradually increases from the outer surface layer to the inner surface layer.Water permeability of the hollow fiber membrane decreases with air gap distance,the water permeability decreases sharply from 45.50×10-7 to 4.52×10-7 m3/(m2·s·kPa)as air gap increases from 0 to 10 mm at take-up speed of 0.236 m/s,further decreases from 4.52×10-7 to 1.00×10-8 m3/(m2·s·kPa)as the air gap increases from 10 to 40 mm.Both the breaking strength and the elongation increase with the increase of air gap distance.The breaking strength increases from 2.25 MPa to 4.19 MPa and the elongation increases from 33.9% to 132.6% as air gap increases from 0 mm to 40 mm at take-up speed 0.236 m/s.展开更多
A new air distribution pattern,air curtain jet ventilation was presented.The ventilation or airflow patterns and the air velocity produced by air curtain jet were investigated in detail.To identify the airflow charact...A new air distribution pattern,air curtain jet ventilation was presented.The ventilation or airflow patterns and the air velocity produced by air curtain jet were investigated in detail.To identify the airflow characteristics of this novel air curtain jet ventilation system,a full-scale room was used to measure the jet velocity with a slot-ventilated supply device,with regards to the airflow fields along the vertical wall as well as on the horizontal floor zones.The airflow fields under three supply air velocities,1.0,1.5 and 2.0 m/s,were carried out in the full-scale room.The experimental results show the velocity profiles of air distribution,the airflow fields along the attached vertical wall and the air lake zones on the floor,respectively.The current experimental research is helpful for heating,ventilation and air conditioning(HVAC) engineers to design better air distribution in rooms.展开更多
Soil holds the largest nitrogen(N)pool in terrestrial ecosystems,but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soi...Soil holds the largest nitrogen(N)pool in terrestrial ecosystems,but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soil N density and environmental factors were explored using data from China's Second National Soil Survey and field investigation in northwest China and the Tibetan Plateau.China's soil N storage at a depth of one meter was estimated at 7.4 Pg,with an average density of 0.84 kg m^(-2).Soil N density appeared to be high in southwest and northeast China and low in the middle areas of the country.Soil N density increased from the arid to semi-arid zone in northern China,and decreased from cold-temperate to tropical zone in the eastern part of the country.An analysis of general linear model suggested that climate and vegetation determined the spatial pattern of soil N density for natural vegetation,which explained 75.4% of the total variance.展开更多
A computational fluid dynamic ( CFD ) analysis of air movement and aerosol particle transport in a two-zone ventilated room with an inter-zonal opening is presented to study the impact of ventilation strategies and ...A computational fluid dynamic ( CFD ) analysis of air movement and aerosol particle transport in a two-zone ventilated room with an inter-zonal opening is presented to study the impact of ventilation strategies and size of the opening on indoor particle dispersion and concentration distribution. The comparisons of average particle concentrations in both zones between the computations and the experiments from the literature are generally satisfactory and acceptable. The combined effects of sizes of the opening and the inlet and outlet locations (three different strategies) are simulated and discussed. The results show that ventilation strategy and size of the opening influence the particle removal rate in zone 1. The removal rate is decreased when the air supply system is changed from the tap-inlet to the bottom-inlet configuration. The top-inlet system obtains a better particle deposition in zone I than the bottom-inlet configuration. However, the particle concentration at breathing level is lower for bottomsupply system than for top-supply. Decreasing the size of interzonal opening increases the particle deposition rate in zone 1 only for the top.supply system, especially for coarse particles.展开更多
Tree species respond to climate change at multiple scales,such as species physiological response at fine scale and species distribution (quantified by percent area) at broader spatial scale.At a given spatial scale,sp...Tree species respond to climate change at multiple scales,such as species physiological response at fine scale and species distribution (quantified by percent area) at broader spatial scale.At a given spatial scale,species physiological response and distribution can be correlated positively or negatively.The consistency of such correlation relationships at different spatial scales determines whether species responses derived from local scales can be extrapo-lated to broader spatial scales.In this study,we used a coupled modeling approach that coupled a plot-level ecosystem process model (LINKAGES) with a spatially explicit landscape model (LANDIS).We investigated species physio-logical responses and distribution responses to climate warming at the local,zonal and landscape scales respectively,and examined how species physiological response and distribution correlated at each corresponding scale and whether the correlations were consistent among these scales.The results indicate that for zonal and warming-sensitive species,the correlations between species physiological response and distribution are consistent at these spatial scales,and therefore the research results of vegetation response to climate warming at the local scale can be extrapolated to the zonal and landscape scales.By contrast,for zonal and warming-insensitive species the correlations among different spatial scales are consistent at some spatial scales but at other scales.The results also suggest that the results of azonal species at the local scale near their distribution boundaries can not be extrapolated simply to broader scales due to stronger responses to climate warming in those boundary regions.展开更多
This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external ...This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external surface. Results indicate that external wall surface temperature and nearby air temperature vary with the change of orientation, height and season. In general, the external wall surface temperature is lower near the ground, and is higher near the roof, than nearby air temperature. But north wall surface temperature is mostly lower than nearby air temperature at the same height; south wall surface temperature during the daytime in December, and west wall surface temperature all day in August, is respectively higher than nearby air temperature. The heat fluxes into and out of external wall surfaces show the differences that exist in the various orientations, heights and seasons. In December, south wall surface at the lower sites emits heat and north wall surface at the higher sites absorbs heat. In April, all external wall surfaces, emit heat near the ground and absorb heat near the roof. In August, west wall surface all day emits heat, and other wall surfaces just show the commensurate behavior with that in April.展开更多
AIM:To evaluate the safety and efficacy of CO2 insufflation compared with air insufflation in the endoscopic submucosal excavation(ESE) of gastrointestinal stromal tumors.METHODS:Sixty patients were randomized to unde...AIM:To evaluate the safety and efficacy of CO2 insufflation compared with air insufflation in the endoscopic submucosal excavation(ESE) of gastrointestinal stromal tumors.METHODS:Sixty patients were randomized to undergo endoscopic submucosal excavation,with the CO2 group(n = 30) and the air group(n = 30) undergoingCO2 insufflation and air insufflation in the ESE,respectively.The end-tidal CO2 level(pETCO2) was observed at 4 time points:at the beginning of ESE,at total removal of the tumors,at completed wound management,and 10 min after ESE.Additionally,the patients' experience of pain at 1,3,6 and 24 h after the examination was registered using a visual analog scale(VAS).RESULTS:Both the CO2 group and air group were similar in mean age,sex,body mass index(all P > 0.05).There were no significant differences in PetCO2 values before and after the procedure(P > 0.05).However,the pain scores after the ESE at different time points in the CO2 group decreased significantly compared with the air group(1 h:21.2 ± 3.4 vs 61.5 ± 1.7;3 h:8.5 ± 0.7 vs 42.9 ± 1.3;6 h:4.4 ± 1.6 vs 27.6 ± 1.2;24 h:2.3 ± 0.4 vs 21.4 ± 0.7,P < 0.05).Meanwhile,the percentage of VAS scores of 0 in the CO2 group after 1,3,6 and 24 h was significantly higher than that in the air group(60.7 ± 1.4 vs 18.9 ± 1.5,81.5 ± 2.3 vs 20.6 ± 1.2,89.2 ± 0.7 vs 36.8 ± 0.9,91.3 ± 0.8 vs 63.8 ± 1.3,respectively,P < 0.05).Moreover,the condition of the CO2 group was better than that of the air group with respect to anal exsufflation.CONCLUSION:Insufflation of CO2 in the ESE of gastrointestinal stromal tumors will not cause CO2 retention and it may significantly reduce the level of pain,thus it is safe and effective.展开更多
Glacial cirques are typical landscape features of mid-latitude mountain environments like the Central Pyrenees. Their morphology as well as their spatial distribution provides insights about past glaciers and climates...Glacial cirques are typical landscape features of mid-latitude mountain environments like the Central Pyrenees. Their morphology as well as their spatial distribution provides insights about past glaciers and climates. In this study, we examine the distribution, morphometrical and topographical characteristics of glacial cirques in two U-shaped glacial valleys located in the Central Pyrenees – the Aran and the Boí valleys. They are located in different aspects of this mountain range(north vs south) under different climatic influences that promoted distinct glaciation patterns during the late Pleistocene. The spatial mapping of these landforms was carried out using high-resolution imagery and field observations. We analysed the data of the morphometrical and topographical variables of the glacial cirques by using different statistical and geospatial methods in order tounveil the factors controlling their formation and development. A total of 186 glacial cirques were mapped in the study area, including 119 in the Aran and 67 in the Boí valleys. The local topography and microclimate conditions lead to substantial differences in both areas in terms of the morphology and dimensions of the cirques. Glacial cirques in Boí are distributed at slightly higher elevations than in Aran and they are also larger, though their dimensions decrease with elevation in both valleys. Aran cirques are mostly oriented NE, while Boí landforms do not show any prevailing aspect. Even though lithology does not control the distribution of the glacial cirques, some specific lithological settings may favour the development of larger cirques. In general, glacial cirques in the Aran and the Boí valleys show morphometrical properties similar to those reported in other mid-latitude mountain ranges.展开更多
An understanding 0f variati0ns in vegetati0n c0ver in resp0nse t0 climate change is critical f0r predicting and managing future terrestrial ec0system dynamics. Because scientists anticipate that m0untain ec0systems wi...An understanding 0f variati0ns in vegetati0n c0ver in resp0nse t0 climate change is critical f0r predicting and managing future terrestrial ec0system dynamics. Because scientists anticipate that m0untain ec0systems will be m0re sensitive t0 future climate change c0mpared t0 0thers, 0ur 0bjectives were t0 investigate the impacts 0f climate change 0n variati0n in vegetati0n c0ver in the Qilian M0untains (QLM), China, between 2000 and 2011. T0 acc0mplish this, we used linear regressi0n techniques 0n 250-m MODIS N0rmalized Difference Vegetati0n Index (NDVI) datasets and mete0r0l0gical rec0rds t0 determine spati0temp0ral variability in vegetati0n c0ver and climatic fact0rs (i.e. temperature and precipitati0n). Our results sh0wed that temperatures and precipitati0n have increased in this regi0n during 0ur study peri0d. In additi0n, we f0und that gr0wing seas0n mean NDVI was mainly distributed in the vertical z0ne fr0m 2,700 m t0 3,600 m in elevati0n. In the study regi0n, we 0bserved significant p0sitive and negative trends in vegetati0n c0ver in 26.71% and 2.27% 0f the vegetated areas. C0rrelati0n analyses indicated that rising precipitati0n fr0m May t0 August was resp0nsible f0r increased vegetati0n c0ver in areas with p0sitive trends in gr0wing seas0n mean NDVI. H0wever, there was n0 similar significant c0rrelati0n between gr0wing seas0n mean NDVI and precipitati0n in regi0ns where vegetati0n c0ver declined thr0ugh0ut 0ur study peri0d. Using spatial statistics, we f0und that veeetati0n c0ver freauentlvdeclined in areas within the 2,500-3,100 m vertical z0ne, where it has steep sl0pe, and is 0n the sunny side 0f m0untains. Here, the p0sitive influences 0f increasing precipitati0n c0uld n0t 0ffset the drier c0nditi0ns that 0ccurred thr0ugh warming trends. In c0ntrast, in higher elevati0n z0nes (3,900-4,500 m) 0n the shaded side 0f the m0untains, rising temperatures and increasing precipitati0n impr0ved c0nditi0ns f0r vegetati0n gr0wth. Increased precipitati0n als0 facilitated vegetati0n gr0wth in areas experiencing warming trends at l0wer elevati0ns (2,000-2,400 m) and 0n l0wer sl0pes where water was m0re easily c0nserved. We suggest that spatial differences in variati0n in vegetati0n as the result 0f climate change depend 0n l0cal m0isture and thermal c0nditi0ns, which are mainly c0ntr0lled by t0p0graphy (e.g. elevati0n, aspect, and sl0pe), and 0ther fact0rs, such as l0cal hydr0l0gy.展开更多
基金Supported by Student Research Fund of Agricultural University of Hebei(cxzr2014023)Technology Fund of Agricultural University of Hebei(ZD201406)~~
文摘The research conducted prediction on changes of atmosphere pollution during July 9, 2014-July 22, 2014 with SPSS based on monitored data of O3 in 13 successive weeks from 6 sites in Baoding City and demonstrated prediction effect of ARIMA model is good by Ljung-Box Q-test and R2, and the model can be used for prediction on future atmosphere pollutant changes.
基金supported by the National Natural Science Foundation of China (Grant No. 40974039)High-Tech Research and Development Program of China (Grant No.2006AA06205)Leading Strategic Project of Science and Technology, Chinese Academy of Sciences (XDA08020500)
文摘Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.
基金Project(21176264)supported by the National Natural Science Foundation of ChinaProject(11JJ2010)supported by the Natural Science Foundation of Hunan Province,China
文摘A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hollow fiber membrane prepared at air gap zero has no skin layer; the pore size near the outer surface is larger than that near the inner surface; and the special pore channel-like structure near the outer surface is formed,which is quite different with the typical sponge-like structure caused by TIPS and the finger-like structure caused by non-solvent induced phase separation(NIPS),because of the synergistic action of non-solvent induced phase separation at air gap zero.The pore size gradually decreases from outer surface layer to the intermediate layer,but increases gradually from intermediate layer to the inner surface layer.With the increase of air gap distance,the pore size near the outer surface gets smaller and a dense skin layer is formed,and the pore size gradually increases from the outer surface layer to the inner surface layer.Water permeability of the hollow fiber membrane decreases with air gap distance,the water permeability decreases sharply from 45.50×10-7 to 4.52×10-7 m3/(m2·s·kPa)as air gap increases from 0 to 10 mm at take-up speed of 0.236 m/s,further decreases from 4.52×10-7 to 1.00×10-8 m3/(m2·s·kPa)as the air gap increases from 10 to 40 mm.Both the breaking strength and the elongation increase with the increase of air gap distance.The breaking strength increases from 2.25 MPa to 4.19 MPa and the elongation increases from 33.9% to 132.6% as air gap increases from 0 mm to 40 mm at take-up speed 0.236 m/s.
基金Projects(50778145, 50278025) supported by the National Natural Science Foundation of ChinaProject(2009ZDKG-47) supported by "13115" Science and Technology Innovation Program of Shaanxi Province, China
文摘A new air distribution pattern,air curtain jet ventilation was presented.The ventilation or airflow patterns and the air velocity produced by air curtain jet were investigated in detail.To identify the airflow characteristics of this novel air curtain jet ventilation system,a full-scale room was used to measure the jet velocity with a slot-ventilated supply device,with regards to the airflow fields along the vertical wall as well as on the horizontal floor zones.The airflow fields under three supply air velocities,1.0,1.5 and 2.0 m/s,were carried out in the full-scale room.The experimental results show the velocity profiles of air distribution,the airflow fields along the attached vertical wall and the air lake zones on the floor,respectively.The current experimental research is helpful for heating,ventilation and air conditioning(HVAC) engineers to design better air distribution in rooms.
基金Project supported by the National Natural Science Foundation of China(Nos.40024101,40228001,and 90211016).
文摘Soil holds the largest nitrogen(N)pool in terrestrial ecosystems,but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soil N density and environmental factors were explored using data from China's Second National Soil Survey and field investigation in northwest China and the Tibetan Plateau.China's soil N storage at a depth of one meter was estimated at 7.4 Pg,with an average density of 0.84 kg m^(-2).Soil N density appeared to be high in southwest and northeast China and low in the middle areas of the country.Soil N density increased from the arid to semi-arid zone in northern China,and decreased from cold-temperate to tropical zone in the eastern part of the country.An analysis of general linear model suggested that climate and vegetation determined the spatial pattern of soil N density for natural vegetation,which explained 75.4% of the total variance.
基金National Natural Science Foundation of China (No.40975012)
文摘A computational fluid dynamic ( CFD ) analysis of air movement and aerosol particle transport in a two-zone ventilated room with an inter-zonal opening is presented to study the impact of ventilation strategies and size of the opening on indoor particle dispersion and concentration distribution. The comparisons of average particle concentrations in both zones between the computations and the experiments from the literature are generally satisfactory and acceptable. The combined effects of sizes of the opening and the inlet and outlet locations (three different strategies) are simulated and discussed. The results show that ventilation strategy and size of the opening influence the particle removal rate in zone 1. The removal rate is decreased when the air supply system is changed from the tap-inlet to the bottom-inlet configuration. The top-inlet system obtains a better particle deposition in zone I than the bottom-inlet configuration. However, the particle concentration at breathing level is lower for bottomsupply system than for top-supply. Decreasing the size of interzonal opening increases the particle deposition rate in zone 1 only for the top.supply system, especially for coarse particles.
基金Under the auspices of International Partnership Program of Chinese Academy of Sciences (No.KZCX2-YW-T06)Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No.KZCX2-YW-444)Major State Basic Research Development Program of China (No.2009CB421101)
文摘Tree species respond to climate change at multiple scales,such as species physiological response at fine scale and species distribution (quantified by percent area) at broader spatial scale.At a given spatial scale,species physiological response and distribution can be correlated positively or negatively.The consistency of such correlation relationships at different spatial scales determines whether species responses derived from local scales can be extrapo-lated to broader spatial scales.In this study,we used a coupled modeling approach that coupled a plot-level ecosystem process model (LINKAGES) with a spatially explicit landscape model (LANDIS).We investigated species physio-logical responses and distribution responses to climate warming at the local,zonal and landscape scales respectively,and examined how species physiological response and distribution correlated at each corresponding scale and whether the correlations were consistent among these scales.The results indicate that for zonal and warming-sensitive species,the correlations between species physiological response and distribution are consistent at these spatial scales,and therefore the research results of vegetation response to climate warming at the local scale can be extrapolated to the zonal and landscape scales.By contrast,for zonal and warming-insensitive species the correlations among different spatial scales are consistent at some spatial scales but at other scales.The results also suggest that the results of azonal species at the local scale near their distribution boundaries can not be extrapolated simply to broader scales due to stronger responses to climate warming in those boundary regions.
文摘This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external surface. Results indicate that external wall surface temperature and nearby air temperature vary with the change of orientation, height and season. In general, the external wall surface temperature is lower near the ground, and is higher near the roof, than nearby air temperature. But north wall surface temperature is mostly lower than nearby air temperature at the same height; south wall surface temperature during the daytime in December, and west wall surface temperature all day in August, is respectively higher than nearby air temperature. The heat fluxes into and out of external wall surfaces show the differences that exist in the various orientations, heights and seasons. In December, south wall surface at the lower sites emits heat and north wall surface at the higher sites absorbs heat. In April, all external wall surfaces, emit heat near the ground and absorb heat near the roof. In August, west wall surface all day emits heat, and other wall surfaces just show the commensurate behavior with that in April.
基金Supported by Grants from Project of Science and Technology Commission of Shanghai Municipality,No. 10441901702Nano-specific Project of Science and Technology Commission of Shanghai Municipality,No. 11nm0503700Shang-hai Key Laboratory of Pediatric Digestion and Nutrition,No. 11DZ2260500
文摘AIM:To evaluate the safety and efficacy of CO2 insufflation compared with air insufflation in the endoscopic submucosal excavation(ESE) of gastrointestinal stromal tumors.METHODS:Sixty patients were randomized to undergo endoscopic submucosal excavation,with the CO2 group(n = 30) and the air group(n = 30) undergoingCO2 insufflation and air insufflation in the ESE,respectively.The end-tidal CO2 level(pETCO2) was observed at 4 time points:at the beginning of ESE,at total removal of the tumors,at completed wound management,and 10 min after ESE.Additionally,the patients' experience of pain at 1,3,6 and 24 h after the examination was registered using a visual analog scale(VAS).RESULTS:Both the CO2 group and air group were similar in mean age,sex,body mass index(all P > 0.05).There were no significant differences in PetCO2 values before and after the procedure(P > 0.05).However,the pain scores after the ESE at different time points in the CO2 group decreased significantly compared with the air group(1 h:21.2 ± 3.4 vs 61.5 ± 1.7;3 h:8.5 ± 0.7 vs 42.9 ± 1.3;6 h:4.4 ± 1.6 vs 27.6 ± 1.2;24 h:2.3 ± 0.4 vs 21.4 ± 0.7,P < 0.05).Meanwhile,the percentage of VAS scores of 0 in the CO2 group after 1,3,6 and 24 h was significantly higher than that in the air group(60.7 ± 1.4 vs 18.9 ± 1.5,81.5 ± 2.3 vs 20.6 ± 1.2,89.2 ± 0.7 vs 36.8 ± 0.9,91.3 ± 0.8 vs 63.8 ± 1.3,respectively,P < 0.05).Moreover,the condition of the CO2 group was better than that of the air group with respect to anal exsufflation.CONCLUSION:Insufflation of CO2 in the ESE of gastrointestinal stromal tumors will not cause CO2 retention and it may significantly reduce the level of pain,thus it is safe and effective.
基金supported by the Research Group Climate Change and Environmental Systems(ZEPHYRUS)of the Institute of GeographySpatial Planning of the University of Lisbon+4 种基金a grant from the Erasmus+LLP Programme Grant funding the research stay of Luis Lopes at the University of Barcelonasupported by the Ramón y Cajal Program of the Spanish Ministry of Economy and Competitiveness(RYC-2015-17597)Financial support was also provided by the research group ANTALP(Antarctic,Arctic and Alpine environments,2017-SGR-1102)the PALEOGREEN(CTM2017-87976-P)CRONOANTAR(CTM2016-77878-P)projects of the Spanish Ministry of Economy and Competitiveness
文摘Glacial cirques are typical landscape features of mid-latitude mountain environments like the Central Pyrenees. Their morphology as well as their spatial distribution provides insights about past glaciers and climates. In this study, we examine the distribution, morphometrical and topographical characteristics of glacial cirques in two U-shaped glacial valleys located in the Central Pyrenees – the Aran and the Boí valleys. They are located in different aspects of this mountain range(north vs south) under different climatic influences that promoted distinct glaciation patterns during the late Pleistocene. The spatial mapping of these landforms was carried out using high-resolution imagery and field observations. We analysed the data of the morphometrical and topographical variables of the glacial cirques by using different statistical and geospatial methods in order tounveil the factors controlling their formation and development. A total of 186 glacial cirques were mapped in the study area, including 119 in the Aran and 67 in the Boí valleys. The local topography and microclimate conditions lead to substantial differences in both areas in terms of the morphology and dimensions of the cirques. Glacial cirques in Boí are distributed at slightly higher elevations than in Aran and they are also larger, though their dimensions decrease with elevation in both valleys. Aran cirques are mostly oriented NE, while Boí landforms do not show any prevailing aspect. Even though lithology does not control the distribution of the glacial cirques, some specific lithological settings may favour the development of larger cirques. In general, glacial cirques in the Aran and the Boí valleys show morphometrical properties similar to those reported in other mid-latitude mountain ranges.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41271024, 40871057, J1210065)
文摘An understanding 0f variati0ns in vegetati0n c0ver in resp0nse t0 climate change is critical f0r predicting and managing future terrestrial ec0system dynamics. Because scientists anticipate that m0untain ec0systems will be m0re sensitive t0 future climate change c0mpared t0 0thers, 0ur 0bjectives were t0 investigate the impacts 0f climate change 0n variati0n in vegetati0n c0ver in the Qilian M0untains (QLM), China, between 2000 and 2011. T0 acc0mplish this, we used linear regressi0n techniques 0n 250-m MODIS N0rmalized Difference Vegetati0n Index (NDVI) datasets and mete0r0l0gical rec0rds t0 determine spati0temp0ral variability in vegetati0n c0ver and climatic fact0rs (i.e. temperature and precipitati0n). Our results sh0wed that temperatures and precipitati0n have increased in this regi0n during 0ur study peri0d. In additi0n, we f0und that gr0wing seas0n mean NDVI was mainly distributed in the vertical z0ne fr0m 2,700 m t0 3,600 m in elevati0n. In the study regi0n, we 0bserved significant p0sitive and negative trends in vegetati0n c0ver in 26.71% and 2.27% 0f the vegetated areas. C0rrelati0n analyses indicated that rising precipitati0n fr0m May t0 August was resp0nsible f0r increased vegetati0n c0ver in areas with p0sitive trends in gr0wing seas0n mean NDVI. H0wever, there was n0 similar significant c0rrelati0n between gr0wing seas0n mean NDVI and precipitati0n in regi0ns where vegetati0n c0ver declined thr0ugh0ut 0ur study peri0d. Using spatial statistics, we f0und that veeetati0n c0ver freauentlvdeclined in areas within the 2,500-3,100 m vertical z0ne, where it has steep sl0pe, and is 0n the sunny side 0f m0untains. Here, the p0sitive influences 0f increasing precipitati0n c0uld n0t 0ffset the drier c0nditi0ns that 0ccurred thr0ugh warming trends. In c0ntrast, in higher elevati0n z0nes (3,900-4,500 m) 0n the shaded side 0f the m0untains, rising temperatures and increasing precipitati0n impr0ved c0nditi0ns f0r vegetati0n gr0wth. Increased precipitati0n als0 facilitated vegetati0n gr0wth in areas experiencing warming trends at l0wer elevati0ns (2,000-2,400 m) and 0n l0wer sl0pes where water was m0re easily c0nserved. We suggest that spatial differences in variati0n in vegetati0n as the result 0f climate change depend 0n l0cal m0isture and thermal c0nditi0ns, which are mainly c0ntr0lled by t0p0graphy (e.g. elevati0n, aspect, and sl0pe), and 0ther fact0rs, such as l0cal hydr0l0gy.