When modeling wave propagation in infinite space, it is necessary to have stable absorbing boundaries to effectively eliminate spurious reflections from the truncation boundaries. The SH wave equations for Perfectly M...When modeling wave propagation in infinite space, it is necessary to have stable absorbing boundaries to effectively eliminate spurious reflections from the truncation boundaries. The SH wave equations for Perfectly Matched Layers (PML) are deduced and their Crank-Nicolson scheme are presented in this paper. We use the second-, sixth-, and tenth-order finite difference and pseudo-spectral algorithms to compute the spatial derivatives. Two numerical models, a homogeneous isotropic medium and a multi-layer model with a cave, are designed to investigate how the absorbing boundary width and the algorithms determine PML effects. Numerical results show that, for PML, the low-order finite difference algorithms have fairly good absorbing effects when the absorbing boundary is thin, whereas, high-order algorithms always have good absorption when the boundary is thick. Finally, we discuss the reflection coefficient and point out its shortcomings, which is why we use the SNR to quantitatively scale the PML effects,展开更多
基金supported jointly by the 973 Program (Grant No.2007CB209505)the National Natural Science Fund (Grant No.40704019,40674061)+1 种基金the School Basic Research Fund of Tsinghua University (JC2007030)PetroChina Innovation Fund (Grant No.060511-1-1)
文摘When modeling wave propagation in infinite space, it is necessary to have stable absorbing boundaries to effectively eliminate spurious reflections from the truncation boundaries. The SH wave equations for Perfectly Matched Layers (PML) are deduced and their Crank-Nicolson scheme are presented in this paper. We use the second-, sixth-, and tenth-order finite difference and pseudo-spectral algorithms to compute the spatial derivatives. Two numerical models, a homogeneous isotropic medium and a multi-layer model with a cave, are designed to investigate how the absorbing boundary width and the algorithms determine PML effects. Numerical results show that, for PML, the low-order finite difference algorithms have fairly good absorbing effects when the absorbing boundary is thin, whereas, high-order algorithms always have good absorption when the boundary is thick. Finally, we discuss the reflection coefficient and point out its shortcomings, which is why we use the SNR to quantitatively scale the PML effects,