We propose a scheme for realizing quantum entanglement swapping between the atoms in cavity QED. With only virtual excitation of the cavity during the interaction between the atoms and cavity, the scheme is insensitiv...We propose a scheme for realizing quantum entanglement swapping between the atoms in cavity QED. With only virtual excitation of the cavity during the interaction between the atoms and cavity, the scheme is insensitive to the cavity mode states and the cavity decay. The ideas can also be utilized for realizing en~anglemen~ swapping between the atomic levels in a single atom and the atomic levels in the Bell states and between the atomic levels in the Bell states and the atomic levels in the W states.展开更多
We present a scheme to entangle fields in multiple cavities. Our scheme is based on the resonant interaction of a ≡-type three-level atom with the cavity fields for precalculated interaction time, which enables us to...We present a scheme to entangle fields in multiple cavities. Our scheme is based on the resonant interaction of a ≡-type three-level atom with the cavity fields for precalculated interaction time, which enables us to generate a quantum entangled Greenberger-Horn-Zeilinger (GHZ) state of fields in multiple cavities. In principle, the scheme can be also generalized to generate N-party GHZ state. The required experimental techniques are within the scope of what can be obtained in the microwave cavity QED set up.展开更多
We propose a simple scheme for the generation of a peculiar tripartite entangled state via thermal cavity. The peculiar tripartite entangled state shares features of the GHZ and 14/ state simultaneously. The photon-nu...We propose a simple scheme for the generation of a peculiar tripartite entangled state via thermal cavity. The peculiar tripartite entangled state shares features of the GHZ and 14/ state simultaneously. The photon-numberdependent parts in the effective Hamiltonian are canceled with the assistance of a strong classical field, thus the scheme is insensitive to both the thermal field and the cavity decay. The only thing one needs to do is to modulate the interaction time only once.展开更多
A scheme for teleporting an arbitrary n-bit one-photon and vacuum entangled Greenberger-Horne-Zeilinger (GHZ) state is proposed. In this scheme, the maximum entanglement GHZ state is used as a quantum channel. We fi...A scheme for teleporting an arbitrary n-bit one-photon and vacuum entangled Greenberger-Horne-Zeilinger (GHZ) state is proposed. In this scheme, the maximum entanglement GHZ state is used as a quantum channel. We find a method of distinguishing four Bell states just by detecting the atomic states three times, which is irrelevant to the qubit number of the state to be teleported.展开更多
The interaction of N two-level atoms with both a two-mode cavity field and an external classical pumpingfield, and with the fields being degenerate in frequency, is studied in the regime where the atoms and fields are...The interaction of N two-level atoms with both a two-mode cavity field and an external classical pumpingfield, and with the fields being degenerate in frequency, is studied in the regime where the atoms and fields are highlydetuned. This dispersive interaction can be used to generate a large number of important entangled coherent statesconditional on the initial atomic states and state-selective measurements. A dynamical relation is established betweenthe results for the case with continuous pumping and the case without external driving where the coherent field is putin as the initial condition.展开更多
Understanding the excited state dynamics of donor-acceptor(D-A)complexes is of fundamental importance both experimentally and theoretically.Herein,we have first explored the photoinduced dynamics of a recently synthes...Understanding the excited state dynamics of donor-acceptor(D-A)complexes is of fundamental importance both experimentally and theoretically.Herein,we have first explored the photoinduced dynamics of a recently synthesized paddle-wheel BODIPY-hexaoxatriphenylene(BODIPY is the abbreviation for BF_(2)-chelated dipyrromethenes)conjugates D-A complexes with the combination of both electronic structure calculations and nonadiabatic dynamics simulations.On the basis of computational results,we concluded that the BODIPY-hexaoxatriphenylene(BH)conjugates will be promoted to the local excited(LE)states of the BODIPY fragments upon excitation,which is followed by the ultrafast exciton transfer from LE state to charge transfer(CT).Instead of the photoinduced electron transfer process proposed in previous experimental work,such a exciton transfer process is accompanied with the photoinduced hole transfer from BODIPY to hexaoxatriphenylene.Additionally,solvent effects are found to play an important role in the photoinduced dynamics.Specifically,the hole transfer dynamics is accelerated by the acetonitrile solvent,which can be ascribed to significant influences of the solvents on the charge transfer states,i.e.the energy gaps between LE and CT excitons are reduced greatly and the non-adiabatic couplings are increased in the meantime.Our present work not only provides valuable insights into the underlying photoinduced mechanism of BH,but also can be helpful for the future design of novel donor-acceptor conjugates with better optoelectronic performance.展开更多
基金The project supported by the Natural Science Foundation of Hunan Province of China under Grant No. 05JJ30005, National Natural Science Foundation of China under Grant No. 10474118, the National Fundamental Research Program of China under Grant No. 2005CB724502, the Science Research Foundation of Educational Department of Hunan Province under Grant No. 05C756, and the Science Research Fund of Hunan Institute of Humanity and Science and Technology under Grant No. 2005A008
文摘We propose a scheme for realizing quantum entanglement swapping between the atoms in cavity QED. With only virtual excitation of the cavity during the interaction between the atoms and cavity, the scheme is insensitive to the cavity mode states and the cavity decay. The ideas can also be utilized for realizing en~anglemen~ swapping between the atomic levels in a single atom and the atomic levels in the Bell states and between the atomic levels in the Bell states and the atomic levels in the W states.
基金The project supported in part by National Nat, ural Science Foundation of China under Grant No. 60478029 We would like to thank professor Wu Ying for enlightening discussions
文摘We present a scheme to entangle fields in multiple cavities. Our scheme is based on the resonant interaction of a ≡-type three-level atom with the cavity fields for precalculated interaction time, which enables us to generate a quantum entangled Greenberger-Horn-Zeilinger (GHZ) state of fields in multiple cavities. In principle, the scheme can be also generalized to generate N-party GHZ state. The required experimental techniques are within the scope of what can be obtained in the microwave cavity QED set up.
基金The project supported by National Natural Science Foundation of China under Grant No.60678022the Doctoral Fund of the Ministry of Education of China under Grant No.20060357008+1 种基金the Key Program of the Education Department of Anhui Province under Grant Nos.2006KJ070A,KJ2007B082the Youth Foundation of West Anhui University under Grant No.WXCQ0601
文摘We propose a simple scheme for the generation of a peculiar tripartite entangled state via thermal cavity. The peculiar tripartite entangled state shares features of the GHZ and 14/ state simultaneously. The photon-numberdependent parts in the effective Hamiltonian are canceled with the assistance of a strong classical field, thus the scheme is insensitive to both the thermal field and the cavity decay. The only thing one needs to do is to modulate the interaction time only once.
基金Project supported by the Natural Science Foundation of Henan Province, China (Grant No 0511010600) and the Education Department of Henan Province, China (Grant No 2006140005).
文摘A scheme for teleporting an arbitrary n-bit one-photon and vacuum entangled Greenberger-Horne-Zeilinger (GHZ) state is proposed. In this scheme, the maximum entanglement GHZ state is used as a quantum channel. We find a method of distinguishing four Bell states just by detecting the atomic states three times, which is irrelevant to the qubit number of the state to be teleported.
基金The project supported by National Natural Science Foundation of China
文摘The interaction of N two-level atoms with both a two-mode cavity field and an external classical pumpingfield, and with the fields being degenerate in frequency, is studied in the regime where the atoms and fields are highlydetuned. This dispersive interaction can be used to generate a large number of important entangled coherent statesconditional on the initial atomic states and state-selective measurements. A dynamical relation is established betweenthe results for the case with continuous pumping and the case without external driving where the coherent field is putin as the initial condition.
基金supported by the National Natural Science Foundation of China(No.22003043 for Xiang-Yang Liu)the National Natural Science Foundation of China(No.21688102,No.21590801,and No.21520102005 for Ganglong Cui)+1 种基金Sichuan Science and Technology Program(No.2020YJ0161 for Xiang-Yang Liu)the High Performance Computing Center of Sichuan Normal University。
文摘Understanding the excited state dynamics of donor-acceptor(D-A)complexes is of fundamental importance both experimentally and theoretically.Herein,we have first explored the photoinduced dynamics of a recently synthesized paddle-wheel BODIPY-hexaoxatriphenylene(BODIPY is the abbreviation for BF_(2)-chelated dipyrromethenes)conjugates D-A complexes with the combination of both electronic structure calculations and nonadiabatic dynamics simulations.On the basis of computational results,we concluded that the BODIPY-hexaoxatriphenylene(BH)conjugates will be promoted to the local excited(LE)states of the BODIPY fragments upon excitation,which is followed by the ultrafast exciton transfer from LE state to charge transfer(CT).Instead of the photoinduced electron transfer process proposed in previous experimental work,such a exciton transfer process is accompanied with the photoinduced hole transfer from BODIPY to hexaoxatriphenylene.Additionally,solvent effects are found to play an important role in the photoinduced dynamics.Specifically,the hole transfer dynamics is accelerated by the acetonitrile solvent,which can be ascribed to significant influences of the solvents on the charge transfer states,i.e.the energy gaps between LE and CT excitons are reduced greatly and the non-adiabatic couplings are increased in the meantime.Our present work not only provides valuable insights into the underlying photoinduced mechanism of BH,but also can be helpful for the future design of novel donor-acceptor conjugates with better optoelectronic performance.