A new meta-heuristic approach is proposed in this paper based on a new composite dispatching rule to tackle the aircraft landing problem(ALP).First,the ALP is modeled as a machine scheduling problem with the objective...A new meta-heuristic approach is proposed in this paper based on a new composite dispatching rule to tackle the aircraft landing problem(ALP).First,the ALP is modeled as a machine scheduling problem with the objective of minimizing the total penalty,i.e.,total weighted earliness plus total weighted tardiness.Second,a composite dispatching rule,minimized penalty with due dates and set-ups(MPDS),is presented to determine the landing sequence.Then,an efficient heuristic approach is proposed to solve the problem by integrating the MPDS rule and CPLEX solver.In the first stage,the landing sequence is established based on the proposed MPDS rule.In the second stage,landing time is optimized using CPLEX solver.Next,a new meta-heuristic strategy is introduced into the heuristic approach by conducting the local search from the potential landing sequences,which are generated by the proposed MPDS rule.Finally,the performance of the proposed approach is evaluated using a set of benchmark instances taken from the OR library.The results demonstrate the effectiveness and efficiency of the proposed approaches.展开更多
In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of ...In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.展开更多
A data-driven method for arrival pattern recognition and prediction is proposed to provide air traffic controllers(ATCOs)with decision support. For arrival pattern recognition,a clustering-based method is proposed to ...A data-driven method for arrival pattern recognition and prediction is proposed to provide air traffic controllers(ATCOs)with decision support. For arrival pattern recognition,a clustering-based method is proposed to cluster arrival patterns by control intentions. For arrival pattern prediction,two predictors are trained to estimate the most possible command issued by the ATCOs in a particular traffic situation. Training the arrival pattern predictor could be regarded as building an ATCOs simulator. The simulator can assign an appropriate arrival pattern for each arrival aircraft,just like real ATCOs do. Therefore,the simulator is considered to be able to provide effective advice for part of the work of ATCOs. Finally,a case study is carried out and demonstrates that the convolutional neural network(CNN)-based predictor performs better than the radom forest(RF)-based one.展开更多
基金This work was supported by the Joint Fund of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U1933117)。
文摘A new meta-heuristic approach is proposed in this paper based on a new composite dispatching rule to tackle the aircraft landing problem(ALP).First,the ALP is modeled as a machine scheduling problem with the objective of minimizing the total penalty,i.e.,total weighted earliness plus total weighted tardiness.Second,a composite dispatching rule,minimized penalty with due dates and set-ups(MPDS),is presented to determine the landing sequence.Then,an efficient heuristic approach is proposed to solve the problem by integrating the MPDS rule and CPLEX solver.In the first stage,the landing sequence is established based on the proposed MPDS rule.In the second stage,landing time is optimized using CPLEX solver.Next,a new meta-heuristic strategy is introduced into the heuristic approach by conducting the local search from the potential landing sequences,which are generated by the proposed MPDS rule.Finally,the performance of the proposed approach is evaluated using a set of benchmark instances taken from the OR library.The results demonstrate the effectiveness and efficiency of the proposed approaches.
基金supported by Nanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund(No.kfjj20200717).
文摘In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.
基金supported by the National Natural Science Foundation of China (Nos. U1933117,61773202,52072174)。
文摘A data-driven method for arrival pattern recognition and prediction is proposed to provide air traffic controllers(ATCOs)with decision support. For arrival pattern recognition,a clustering-based method is proposed to cluster arrival patterns by control intentions. For arrival pattern prediction,two predictors are trained to estimate the most possible command issued by the ATCOs in a particular traffic situation. Training the arrival pattern predictor could be regarded as building an ATCOs simulator. The simulator can assign an appropriate arrival pattern for each arrival aircraft,just like real ATCOs do. Therefore,the simulator is considered to be able to provide effective advice for part of the work of ATCOs. Finally,a case study is carried out and demonstrates that the convolutional neural network(CNN)-based predictor performs better than the radom forest(RF)-based one.