In the performance based navigation(PBN),the flight technical error(FTE)and the navigation system error(NSE)are two main parts of total system error(TSE).The implementation of PBN requires pre-flight predictio...In the performance based navigation(PBN),the flight technical error(FTE)and the navigation system error(NSE)are two main parts of total system error(TSE).The implementation of PBN requires pre-flight prediction and en-route short-term dynamical prediction of TSE.Once the sum of predicted FTE and NSE is greater than the specified PBN value,PBN cannot operate.Thus,it requires accurate modeling and thorough analysis of the two main contributors.Multiple-input multiple-output(MIMO)longitudinal flight control system of ARIC model is designed using the linear quadratic Gaussian and loop transfer recovery(LQG/LTR)method,and FTE in symmetrical plane of aircraft is analyzed during the turbulence disturbed approach.The error estimation mapping function of FTE in symmetrical plane and its bound estimation model are proposed based on the singular value theory.The model provides an approach based on the forming mechanism of FTE,rather than the costly flight test and the data fitting.Real-data based simulation validates the theoretical analysis of FTE in symmetrical plane.It also shows that FTE is partially caused by the turbulence fluctuation disturbance when the automatic flight control system(AFCS)is engaged and increases with escalating the environmental turbulence intensity.展开更多
To compare effect of high-frequency oscillation ventilation (HFOV) and conventional mandatory ventilation (CMV) on lung injury development in rabbit with acute respiratory distress syndrome ( ARDS). Methods Anim...To compare effect of high-frequency oscillation ventilation (HFOV) and conventional mandatory ventilation (CMV) on lung injury development in rabbit with acute respiratory distress syndrome ( ARDS). Methods Animals that underwent saline lung lavage to produce lung injury were randomized to one of the two treatment groups ( HFOV or CMV, n =6). PaCO2 was maintained between 35 -45mmHg and arterial oxygen saturation ( SaO2 ) was maintain 〉 88% by adjusting corresponding ventilator parameters. Ventilation period was 6h. Lung fluids were aspirated before and at the end of ventilation for cell analysis. Then the animals were euthanized, lung tissue was removed for wet/dry weight measurement, light and electron microscopic examination. Besults The difference of artery blood gas analyses(pH, PaO2, PaCO2 ) between HFOV and CMV was insignificant. The difference between HFOV and CMV in cytological examination of lung fluids, wet/dry weight measurement was also insignificant. But compared with CMV, HFOV not only reduced the area of lung injury, but also reduced lung injury score in light and electron microscopic examination. Conclusion When same artery blood gas analysis was obtained, HFOV significantly reduced lung injury development in ARDS animal than CMV. As a lung protection strategy, HFOV can be used in the treatment of ARDS.展开更多
基金Supported by the National Basic Research Program of China("973"Program)(2010CB731805)theFoundation for Innovative Research Groups of the National Natural Science Foundation of China(60921001)+1 种基金the National Key Technologies R&D Program of China(2011BAH24B02)the Basic Scientific Research Fundation of Central Institutions of Higher Education(ZXH2009D006)~~
文摘In the performance based navigation(PBN),the flight technical error(FTE)and the navigation system error(NSE)are two main parts of total system error(TSE).The implementation of PBN requires pre-flight prediction and en-route short-term dynamical prediction of TSE.Once the sum of predicted FTE and NSE is greater than the specified PBN value,PBN cannot operate.Thus,it requires accurate modeling and thorough analysis of the two main contributors.Multiple-input multiple-output(MIMO)longitudinal flight control system of ARIC model is designed using the linear quadratic Gaussian and loop transfer recovery(LQG/LTR)method,and FTE in symmetrical plane of aircraft is analyzed during the turbulence disturbed approach.The error estimation mapping function of FTE in symmetrical plane and its bound estimation model are proposed based on the singular value theory.The model provides an approach based on the forming mechanism of FTE,rather than the costly flight test and the data fitting.Real-data based simulation validates the theoretical analysis of FTE in symmetrical plane.It also shows that FTE is partially caused by the turbulence fluctuation disturbance when the automatic flight control system(AFCS)is engaged and increases with escalating the environmental turbulence intensity.
文摘To compare effect of high-frequency oscillation ventilation (HFOV) and conventional mandatory ventilation (CMV) on lung injury development in rabbit with acute respiratory distress syndrome ( ARDS). Methods Animals that underwent saline lung lavage to produce lung injury were randomized to one of the two treatment groups ( HFOV or CMV, n =6). PaCO2 was maintained between 35 -45mmHg and arterial oxygen saturation ( SaO2 ) was maintain 〉 88% by adjusting corresponding ventilator parameters. Ventilation period was 6h. Lung fluids were aspirated before and at the end of ventilation for cell analysis. Then the animals were euthanized, lung tissue was removed for wet/dry weight measurement, light and electron microscopic examination. Besults The difference of artery blood gas analyses(pH, PaO2, PaCO2 ) between HFOV and CMV was insignificant. The difference between HFOV and CMV in cytological examination of lung fluids, wet/dry weight measurement was also insignificant. But compared with CMV, HFOV not only reduced the area of lung injury, but also reduced lung injury score in light and electron microscopic examination. Conclusion When same artery blood gas analysis was obtained, HFOV significantly reduced lung injury development in ARDS animal than CMV. As a lung protection strategy, HFOV can be used in the treatment of ARDS.