Analyzes and calculates the process of development of a temporary cavity in the muscle directly after a projectile wounds organisms at a high speed. The muscle is taken as a non compressible Voigt Kelvin viscoel...Analyzes and calculates the process of development of a temporary cavity in the muscle directly after a projectile wounds organisms at a high speed. The muscle is taken as a non compressible Voigt Kelvin viscoelastic fluid model, on the assumption of moving in a radial direction and on spherical symmetry, a theoretical model proposed using the basic equations of the non Newtonian fluid mechanics. The model can well describe the pulsation process of the temporary cavity and changes of pressure in the cavity. The calculated results are in correspondence with the experimental results. The model can be applied in the quantitative analysis of a temporary cavity.展开更多
At the molecular mechanic level, the capability of a set of 24 molecular cage-like structures, the spherophanes, to store hydrogen molecules has been studied. Two main factors have been found to govern their storage c...At the molecular mechanic level, the capability of a set of 24 molecular cage-like structures, the spherophanes, to store hydrogen molecules has been studied. Two main factors have been found to govern their storage capacity: the volume of their cavity and the potential energy barriers at the different openings at the surface of the cage. Calculations have shown that 13H2 molecules could be stored inside the thiaspherophane, Th4S, whose mean radius is 10A and the resulting complex (H2)I3@Th4S is found to be stable. The results show that it would be very difficult to store more than 2H2 inside the smallest spherophane, Sp4, whose mean radius is 7.7A. The mean intermolecular distance Hz-Hz and the mean bond length H-H have been found to decrease when the number of imprisoned hydrogen molecules increases. It has also been found that the encapsulated H2 molecules form clusters of different symmetries on which the formation energy depends strongly. Even with 13H2 molecules inside Th4S, the weight percentage is still small, 2.57%. The largest obtained wt% is 3.22% in the case of Th5S(CH3)10.展开更多
Considering the adiabatical approximation and the large detuning condition, we give the effective Hamiltonian of a ladder-type three levels atom interacting with a bimodal cavity field. If two identical three-level at...Considering the adiabatical approximation and the large detuning condition, we give the effective Hamiltonian of a ladder-type three levels atom interacting with a bimodal cavity field. If two identical three-level atoms are sent through the cavity one by one, a two-atom entangled state can be generated. With the choice of the appropriate interaction time, a maximally entangled state of two atoms can be obtained if decoherence effect is ignored. Moreover, we discuss the effect of cavity decay on four physical quantities including atomic population probability, residual entanglement of the first atom and the cavity field, concurrence between the two atoms, and fidelity for generating atomic EPR state, all of which decrease with the increase of cavity decay when the other parameters are fixed.展开更多
An all-solid-state ultraviolet laser based on frequency doubling in an external ring cavity with low input pump power is reported. Both second harmonic generation (SHG) and fourth harmonic generation (PRIG) occurr...An all-solid-state ultraviolet laser based on frequency doubling in an external ring cavity with low input pump power is reported. Both second harmonic generation (SHG) and fourth harmonic generation (PRIG) occurred in an external threemirrors ring cavity. The need for impedance matching of this cavity to the input radiation was eliminated and the cavity adaptation was simplified, because the mirrors were not highly reflecting at 1064 nm and the cavity resonates only at 532 rim. Experiment results demonstrate that the conversion efficiency of this external cavity is higher than that of the singlepass condition.展开更多
This study discussed how cavity gas pressure affects the stability of rock mass with fractures under well controlled laboratory experiments.Suddenly-created void space created and the induced gas pressures have been t...This study discussed how cavity gas pressure affects the stability of rock mass with fractures under well controlled laboratory experiments.Suddenly-created void space created and the induced gas pressures have been the focus of active researches because they are associated with fast movement of large-scale landslides.A shaking table experiment was set up to mimic weak-intercalated rock slope under seismic loads.Excessive cavity gas pressure would be produced in weak spots upon a sudden vibration load.The drastically elevated gas pressure is believed to be responsible for the creation of cavities surrounding the tension fracture.With dissipation of the excessive cavity gas pressure,the fractures are in unbounded closed-state.This observation explains that the slope body would be split and loosened under several aftershocks,and with the expanding of the cracks,the slope failure eventually occurred.The research of the mechanism of cavity gas pressure could provide a novel insight into the formation mechanism of landslides under seismic load and has implications for the disaster prevention and control theory for the slope stability evaluation.展开更多
Based on theoretical analysis of PCM(Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with...Based on theoretical analysis of PCM(Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA(National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.展开更多
文摘Analyzes and calculates the process of development of a temporary cavity in the muscle directly after a projectile wounds organisms at a high speed. The muscle is taken as a non compressible Voigt Kelvin viscoelastic fluid model, on the assumption of moving in a radial direction and on spherical symmetry, a theoretical model proposed using the basic equations of the non Newtonian fluid mechanics. The model can well describe the pulsation process of the temporary cavity and changes of pressure in the cavity. The calculated results are in correspondence with the experimental results. The model can be applied in the quantitative analysis of a temporary cavity.
文摘At the molecular mechanic level, the capability of a set of 24 molecular cage-like structures, the spherophanes, to store hydrogen molecules has been studied. Two main factors have been found to govern their storage capacity: the volume of their cavity and the potential energy barriers at the different openings at the surface of the cage. Calculations have shown that 13H2 molecules could be stored inside the thiaspherophane, Th4S, whose mean radius is 10A and the resulting complex (H2)I3@Th4S is found to be stable. The results show that it would be very difficult to store more than 2H2 inside the smallest spherophane, Sp4, whose mean radius is 7.7A. The mean intermolecular distance Hz-Hz and the mean bond length H-H have been found to decrease when the number of imprisoned hydrogen molecules increases. It has also been found that the encapsulated H2 molecules form clusters of different symmetries on which the formation energy depends strongly. Even with 13H2 molecules inside Th4S, the weight percentage is still small, 2.57%. The largest obtained wt% is 3.22% in the case of Th5S(CH3)10.
基金supported by National Natural Science Foundation of China under Grant Nos.60708003,60578050,and 10434060the State Key Basic Research and Development Program of China under Grant Nos.2006CB921104 and 2006CB921604
文摘Considering the adiabatical approximation and the large detuning condition, we give the effective Hamiltonian of a ladder-type three levels atom interacting with a bimodal cavity field. If two identical three-level atoms are sent through the cavity one by one, a two-atom entangled state can be generated. With the choice of the appropriate interaction time, a maximally entangled state of two atoms can be obtained if decoherence effect is ignored. Moreover, we discuss the effect of cavity decay on four physical quantities including atomic population probability, residual entanglement of the first atom and the cavity field, concurrence between the two atoms, and fidelity for generating atomic EPR state, all of which decrease with the increase of cavity decay when the other parameters are fixed.
文摘An all-solid-state ultraviolet laser based on frequency doubling in an external ring cavity with low input pump power is reported. Both second harmonic generation (SHG) and fourth harmonic generation (PRIG) occurred in an external threemirrors ring cavity. The need for impedance matching of this cavity to the input radiation was eliminated and the cavity adaptation was simplified, because the mirrors were not highly reflecting at 1064 nm and the cavity resonates only at 532 rim. Experiment results demonstrate that the conversion efficiency of this external cavity is higher than that of the singlepass condition.
基金financially supported by Project of the National Natural Science Foundation of China (Grant No.41072230)Project of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No.SKLGP2012Z008)Project of Chengdu University of Technology Research and Innovation Team
文摘This study discussed how cavity gas pressure affects the stability of rock mass with fractures under well controlled laboratory experiments.Suddenly-created void space created and the induced gas pressures have been the focus of active researches because they are associated with fast movement of large-scale landslides.A shaking table experiment was set up to mimic weak-intercalated rock slope under seismic loads.Excessive cavity gas pressure would be produced in weak spots upon a sudden vibration load.The drastically elevated gas pressure is believed to be responsible for the creation of cavities surrounding the tension fracture.With dissipation of the excessive cavity gas pressure,the fractures are in unbounded closed-state.This observation explains that the slope body would be split and loosened under several aftershocks,and with the expanding of the cracks,the slope failure eventually occurred.The research of the mechanism of cavity gas pressure could provide a novel insight into the formation mechanism of landslides under seismic load and has implications for the disaster prevention and control theory for the slope stability evaluation.
基金financially supported by National Natural Science Foundation of China(Grant No.51476172)
文摘Based on theoretical analysis of PCM(Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA(National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.