Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the ...Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the cavity expanding were adopted.The energy conservation equation was established and the limited pressure of cavity expansion under high stresses was given based on the energy dissipation analysis method,in which the energy generated from cavity expansion is absorbed by the volume change and shear strain caused in soil.The factors of large strain and dilatation were considered by the proposed method.The analysis shows that the limited pressure is determined by failure criterion,stress state,large deformation characteristic,dilatation and strength of soil.It is shown from the comparison that the results with the proposed method approximate to those of the in-situ method.The cavity expansion pressure first decreases and then increases nonlinearly with both of shear modulus and dilatation increasing.展开更多
A computational investigation has been conducted to determine the effectiveness of a passive control technique of attenuating cavity-induced pressure oscillations in a confined two-dimensional supersonic flow. The pas...A computational investigation has been conducted to determine the effectiveness of a passive control technique of attenuating cavity-induced pressure oscillations in a confined two-dimensional supersonic flow. The passive control technique is achieved by fitting two flat plates near the front wall of a square cavity at Mach number 1.83 at the cavity entrance. The results showed that the flat plates attached near the front wall of the cavity, discouraged the formation of feedback loop which is widely believed to be the reason of cavity resonance. The resultant amount of attenuation of pressure oscillations was also dependent on the length of the flat plate used as an oscillation suppressor.展开更多
Supersonic cavity flows are characterized by compression and expansion waves, shear layer, and oscillations inside the cavity. For decades, investigations into cavity flows have been conducted, mostly with flows at ze...Supersonic cavity flows are characterized by compression and expansion waves, shear layer, and oscillations inside the cavity. For decades, investigations into cavity flows have been conducted, mostly with flows at zero pressure gradient entering the cavity in straight walls. Since cavity flows on curved walls exert centrifugal force, the features of these flows are likely to differ from those of straight wall flows. The aim of the present work is to study the flow physics of a cavity that is cut out on a curved wall. Steady and unsteady numerical simulations were carried out for supersonic flow through curved channels over the cavity with L/H = 1. A straight channel flow was also analyzed which serves as the base model. The velocity gradient along the width of the channel was observed to increase with increasing the channel curvature for both concave and convex channels. The pressure on the cavity floor increases with the increase in channel curvature for concave channels and decreases for convex channels. Moreover, unsteady flow characteristics are more dependent on channel curvature under supersonic free stream conditions.展开更多
基金Projects(2010RS4016,10JJ60708) supported by Hunan Provincial Science Foundation,ChinaProjects(201018,201108,201121) supported by Hunan Provincial Transportation Science and Technology Progress and Innovation Plan of China
文摘Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the cavity expanding were adopted.The energy conservation equation was established and the limited pressure of cavity expansion under high stresses was given based on the energy dissipation analysis method,in which the energy generated from cavity expansion is absorbed by the volume change and shear strain caused in soil.The factors of large strain and dilatation were considered by the proposed method.The analysis shows that the limited pressure is determined by failure criterion,stress state,large deformation characteristic,dilatation and strength of soil.It is shown from the comparison that the results with the proposed method approximate to those of the in-situ method.The cavity expansion pressure first decreases and then increases nonlinearly with both of shear modulus and dilatation increasing.
文摘A computational investigation has been conducted to determine the effectiveness of a passive control technique of attenuating cavity-induced pressure oscillations in a confined two-dimensional supersonic flow. The passive control technique is achieved by fitting two flat plates near the front wall of a square cavity at Mach number 1.83 at the cavity entrance. The results showed that the flat plates attached near the front wall of the cavity, discouraged the formation of feedback loop which is widely believed to be the reason of cavity resonance. The resultant amount of attenuation of pressure oscillations was also dependent on the length of the flat plate used as an oscillation suppressor.
基金supported by Advanced Research Center Program(NRF-2013R1A5A1073861)through the National Research Foundation of Korea(NRF)
文摘Supersonic cavity flows are characterized by compression and expansion waves, shear layer, and oscillations inside the cavity. For decades, investigations into cavity flows have been conducted, mostly with flows at zero pressure gradient entering the cavity in straight walls. Since cavity flows on curved walls exert centrifugal force, the features of these flows are likely to differ from those of straight wall flows. The aim of the present work is to study the flow physics of a cavity that is cut out on a curved wall. Steady and unsteady numerical simulations were carried out for supersonic flow through curved channels over the cavity with L/H = 1. A straight channel flow was also analyzed which serves as the base model. The velocity gradient along the width of the channel was observed to increase with increasing the channel curvature for both concave and convex channels. The pressure on the cavity floor increases with the increase in channel curvature for concave channels and decreases for convex channels. Moreover, unsteady flow characteristics are more dependent on channel curvature under supersonic free stream conditions.