In the history of human space exploration, many failures of launch vehicles and spacecraft tare caused by vibration. At first, the periods in which the space products are in a vibration environment are discussed and t...In the history of human space exploration, many failures of launch vehicles and spacecraft tare caused by vibration. At first, the periods in which the space products are in a vibration environment are discussed and the need for vibration testing is then introduced. As the main content of this paper, the current situation of shaker systems is elaborated in detail. In this part, electrodynamic shakers, as the most widely used vibration generators, are illustrated in detail including structures, principles and performances. Special inventions worldwide in the development of electrodynamic shakers such as induction ring shakers, high force shakers, multi-axial vibration testing systems and combined environmental testing systems are presented. At last, the recent progress and outlook of shaker systems are summarized.展开更多
Based on dynamometer test cycles or plain motorway operation, heavy truck hybridisation must be considered as uneconomic if only the kinetic vehicle energy can be recuperated. In mountainous regions, micro hybridizati...Based on dynamometer test cycles or plain motorway operation, heavy truck hybridisation must be considered as uneconomic if only the kinetic vehicle energy can be recuperated. In mountainous regions, micro hybridization by a 48V-belt generator or mild parallel hybridisation by a large high voltage electric drive can result in considerable fuel consumption savings as well as additional benefits for heavy load utility vehicles. Additional electric power and battery size are still critical design parameters as well as critical cost factors considering the limited space and depreciation time as well as the need for maximum payload. Based on vehicle model simulations, this contribution quantifies fuel consumption savings, recuperation energy harvesting and battery requirements for different truck sizes with test cycles based on realistic route topography. The main route topography parameter for the recuperation benefit is the effective incline that integrates all downhill sections that overcompensates the vehicle resistance by tire friction and air resistance. The simulation parameter studies lead to an analytical benefit estimation, based on load cycle parameters like effective velocity, effective incline as well as the vehicle parameters mass, drag coefficient and cross sectional area. Thus, the return on investment can be assessed by an analytic rule of thumb, based on tracked cycles of existing vehicles.展开更多
The effects of the mat preprocessing method on total volatile organic compounds (TVOC) emission of car mat are studied in this paper. An appropriate TVOC emission period for car mat is suggested. The emission factor...The effects of the mat preprocessing method on total volatile organic compounds (TVOC) emission of car mat are studied in this paper. An appropriate TVOC emission period for car mat is suggested. The emission factors for to- tal volatile organic compounds from three kinds of new car mats are discussed. The car mats are preprocessed by washing, baking and ventilation. When car mats are preprocessed by washing, the TVOC emission for all samples tested are lower than that preprocessed in other methods. The TVOC emission is in stable situation for a mini- mum of 4 days. The TVOC emitted from some samples may exceed 25001ag/kg. But the TVOC emitted from washed Polyamide (PA) and wool mat is less than 25001ag/kg. The emission factors of total volatile organic com- pounds (TVOC) are experimentally investigated in the case of different preprocessing methods. The air tempera- ture in environment chamber and the water temperature for washing are important factors influencing on emission of car mats.展开更多
文摘In the history of human space exploration, many failures of launch vehicles and spacecraft tare caused by vibration. At first, the periods in which the space products are in a vibration environment are discussed and the need for vibration testing is then introduced. As the main content of this paper, the current situation of shaker systems is elaborated in detail. In this part, electrodynamic shakers, as the most widely used vibration generators, are illustrated in detail including structures, principles and performances. Special inventions worldwide in the development of electrodynamic shakers such as induction ring shakers, high force shakers, multi-axial vibration testing systems and combined environmental testing systems are presented. At last, the recent progress and outlook of shaker systems are summarized.
文摘Based on dynamometer test cycles or plain motorway operation, heavy truck hybridisation must be considered as uneconomic if only the kinetic vehicle energy can be recuperated. In mountainous regions, micro hybridization by a 48V-belt generator or mild parallel hybridisation by a large high voltage electric drive can result in considerable fuel consumption savings as well as additional benefits for heavy load utility vehicles. Additional electric power and battery size are still critical design parameters as well as critical cost factors considering the limited space and depreciation time as well as the need for maximum payload. Based on vehicle model simulations, this contribution quantifies fuel consumption savings, recuperation energy harvesting and battery requirements for different truck sizes with test cycles based on realistic route topography. The main route topography parameter for the recuperation benefit is the effective incline that integrates all downhill sections that overcompensates the vehicle resistance by tire friction and air resistance. The simulation parameter studies lead to an analytical benefit estimation, based on load cycle parameters like effective velocity, effective incline as well as the vehicle parameters mass, drag coefficient and cross sectional area. Thus, the return on investment can be assessed by an analytic rule of thumb, based on tracked cycles of existing vehicles.
基金supported by National Key Technology R&D Program(No.2012BAB12B02)
文摘The effects of the mat preprocessing method on total volatile organic compounds (TVOC) emission of car mat are studied in this paper. An appropriate TVOC emission period for car mat is suggested. The emission factors for to- tal volatile organic compounds from three kinds of new car mats are discussed. The car mats are preprocessed by washing, baking and ventilation. When car mats are preprocessed by washing, the TVOC emission for all samples tested are lower than that preprocessed in other methods. The TVOC emission is in stable situation for a mini- mum of 4 days. The TVOC emitted from some samples may exceed 25001ag/kg. But the TVOC emitted from washed Polyamide (PA) and wool mat is less than 25001ag/kg. The emission factors of total volatile organic com- pounds (TVOC) are experimentally investigated in the case of different preprocessing methods. The air tempera- ture in environment chamber and the water temperature for washing are important factors influencing on emission of car mats.