Formaldehyde is the key contaminant influencing building occupants' health in indoor environment. In order to reduce occupants' exposures to formaldehyde, a newly designed photocatalytic reactor was applied in a dyn...Formaldehyde is the key contaminant influencing building occupants' health in indoor environment. In order to reduce occupants' exposures to formaldehyde, a newly designed photocatalytic reactor was applied in a dynamic HVAC (heating, ventilation and air conditioning) system. The experiments were carried out for the removal of formaldehyde present in air at low parts per million (ppm) concentrations. The initial formaldehyde concentrations were set as 1.59 ppm and 0.27 ppm respectively, based on the formaldehyde levels in the polluted places. Experimental results show that the photocatalytic reactor is effective on formaldehyde photodegradation, causes a low pressure drop, and does not make the second pollution of ozone. The kinetic anaiysis indicates that the kinetics for oxidation processes can be fitted well by a pseudo-first-order kinetic model deduced from Langmuir - Hinshelwood (L-H) model.展开更多
Endothelial cells(ECs)not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid,macromolecules and cells,but also play a critical role in regulation of vascular homeostasis an...Endothelial cells(ECs)not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid,macromolecules and cells,but also play a critical role in regulation of vascular homeostasis and adaptation under mechanical stimulus via intrinsic mechanotransduction.Recently,with the dissection of microdomains responsible for cellular responsiveness to mechanical stimulus,a lot of mechanosensing molecules(mechanosensors)and pathways have been identified in ECs.In addition,there is growing evidence that endothelial mechanosensors not only serve as key vascular gatekeepers,but also contribute to the pathogenesis of various vascular disorders.This review focuses on recent findings in endothelial mechanosensors in subcellular microdomains and their roles in regulation of physiological and pathological functions under mechanical stress.展开更多
基金This researchis financed by the Foundation against SARS of shanghai Sci-tech Committee (NK2003 006)
文摘Formaldehyde is the key contaminant influencing building occupants' health in indoor environment. In order to reduce occupants' exposures to formaldehyde, a newly designed photocatalytic reactor was applied in a dynamic HVAC (heating, ventilation and air conditioning) system. The experiments were carried out for the removal of formaldehyde present in air at low parts per million (ppm) concentrations. The initial formaldehyde concentrations were set as 1.59 ppm and 0.27 ppm respectively, based on the formaldehyde levels in the polluted places. Experimental results show that the photocatalytic reactor is effective on formaldehyde photodegradation, causes a low pressure drop, and does not make the second pollution of ozone. The kinetic anaiysis indicates that the kinetics for oxidation processes can be fitted well by a pseudo-first-order kinetic model deduced from Langmuir - Hinshelwood (L-H) model.
基金supported by the National Natural Science Foundation of China(91339111,31221002)National Basic Research Program of China(2012CB945100)to Luo JinCai
文摘Endothelial cells(ECs)not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid,macromolecules and cells,but also play a critical role in regulation of vascular homeostasis and adaptation under mechanical stimulus via intrinsic mechanotransduction.Recently,with the dissection of microdomains responsible for cellular responsiveness to mechanical stimulus,a lot of mechanosensing molecules(mechanosensors)and pathways have been identified in ECs.In addition,there is growing evidence that endothelial mechanosensors not only serve as key vascular gatekeepers,but also contribute to the pathogenesis of various vascular disorders.This review focuses on recent findings in endothelial mechanosensors in subcellular microdomains and their roles in regulation of physiological and pathological functions under mechanical stress.