期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于空谱字典的加权联合稀疏表示高光谱图像分类
被引量:
13
1
作者
陈善学
何宇峰
《光学学报》
EI
CAS
CSCD
北大核心
2023年第1期58-68,共11页
稀疏表示广泛用于高光谱图像分类任务中。针对字典原子空间信息和光谱信息未得到充分利用的问题,提出了基于空谱字典的加权联合稀疏表示高光谱图像分类算法。计算测试像元与字典原子的空谱联合距离,选择相似度最高的K个字典原子,并将被...
稀疏表示广泛用于高光谱图像分类任务中。针对字典原子空间信息和光谱信息未得到充分利用的问题,提出了基于空谱字典的加权联合稀疏表示高光谱图像分类算法。计算测试像元与字典原子的空谱联合距离,选择相似度最高的K个字典原子,并将被选择字典原子的超像素邻域扩充到新的字典中,形成空谱字典。在联合稀疏模型中,对测试像元的超像素邻域像元使用不同的权重,在空谱字典上构建加权稀疏表示模型。基于所选的两个高光谱数据集的实验证明所提算法能够有效地提高分类精度。
展开更多
关键词
图像处理
高光
谱
图像分类
空谱字典
超像素
稀疏表示
原文传递
题名
基于空谱字典的加权联合稀疏表示高光谱图像分类
被引量:
13
1
作者
陈善学
何宇峰
机构
重庆邮电大学移动通信技术重庆市重点实验室
重庆邮电大学通信与信息工程学院
出处
《光学学报》
EI
CAS
CSCD
北大核心
2023年第1期58-68,共11页
文摘
稀疏表示广泛用于高光谱图像分类任务中。针对字典原子空间信息和光谱信息未得到充分利用的问题,提出了基于空谱字典的加权联合稀疏表示高光谱图像分类算法。计算测试像元与字典原子的空谱联合距离,选择相似度最高的K个字典原子,并将被选择字典原子的超像素邻域扩充到新的字典中,形成空谱字典。在联合稀疏模型中,对测试像元的超像素邻域像元使用不同的权重,在空谱字典上构建加权稀疏表示模型。基于所选的两个高光谱数据集的实验证明所提算法能够有效地提高分类精度。
关键词
图像处理
高光
谱
图像分类
空谱字典
超像素
稀疏表示
Keywords
image processing
hyperspectral image classification
spatial-spectral dictionary
superpixel
sparse representation
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于空谱字典的加权联合稀疏表示高光谱图像分类
陈善学
何宇峰
《光学学报》
EI
CAS
CSCD
北大核心
2023
13
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部