The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion...The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.展开更多
The developed visualization methods of two dimensional (2D) site and three dimensional (3D) cube representations have been performed to show the orientation of transition dipole, charge transfer, and electron-hole...The developed visualization methods of two dimensional (2D) site and three dimensional (3D) cube representations have been performed to show the orientation of transition dipole, charge transfer, and electron-hole coherence in two-photon absorption (TPA). The 3D cube representations of transition density can reveal visually the orientation and strength of transition dipole moment, and charge different density show the orientation of charge transfer in TPA. The 2D site representation can reveal visually the electron-hole coherence in TPA. The combination of 2D site and 3D cube representations provide clearly inspect into the charge transfer process and the contribution of excited molecular segments for TPA.展开更多
基金Project(2013CB036203)supported by the National Basic Research Program of ChinaProject(2013M530022)supported by China Postdoctoral Science Foundation+4 种基金Project(2013-K5-31)supported by Science and Technology Plan of Ministry of Housing and Urban-Rural Development of ChinaProject supported by High-level Scientific Research Foundation for the Introduction of Talent of Yangzhou University,ChinaProject supported by the Open Fund of the National Engineering Laboratory for High Speed Railway Construction,ChinaProject(IRT1296)supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject(50908236)supported by the National Natural Science Foundation of China
文摘The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.
基金This work was supported by the National Natural Science Foundation of China (No.10874234, No.20703064, and No.10604012). Authors thank Prof. Chuan-kui Wang for his valuable suggestions.
文摘The developed visualization methods of two dimensional (2D) site and three dimensional (3D) cube representations have been performed to show the orientation of transition dipole, charge transfer, and electron-hole coherence in two-photon absorption (TPA). The 3D cube representations of transition density can reveal visually the orientation and strength of transition dipole moment, and charge different density show the orientation of charge transfer in TPA. The 2D site representation can reveal visually the electron-hole coherence in TPA. The combination of 2D site and 3D cube representations provide clearly inspect into the charge transfer process and the contribution of excited molecular segments for TPA.