在风力发电机组吊装完成和高风速切出或故障切出时,机组保持在空转停机状态。在现场特定风况和特定机组状态组合下,叶片容易发生由动态失速导致的振荡现象,极大威胁叶片疲劳寿命和机组安全性。根据IEC 61400-1规范中的要求,机组处于空...在风力发电机组吊装完成和高风速切出或故障切出时,机组保持在空转停机状态。在现场特定风况和特定机组状态组合下,叶片容易发生由动态失速导致的振荡现象,极大威胁叶片疲劳寿命和机组安全性。根据IEC 61400-1规范中的要求,机组处于空转停机状态,应考虑极端风速模型(EWM)。针对叶片长度分别为92、97、112 m 3款叶片进行建模分析,研究机组发生失速振荡的内在规律和抑制手段。通过对机组在0~360°风向、场址极端风速以及降低风况条件进行Bladed仿真,发现3款机组均在1只叶片竖直向下位置附近、风向30°和330°附近容易发生叶片失速振荡现象。基于失速振荡发生较为集中的工况,通过调整桨距角能够实现对振荡幅值的抑制;针对不同气动外形,抑制效果有一定差别。展开更多
文摘在风力发电机组吊装完成和高风速切出或故障切出时,机组保持在空转停机状态。在现场特定风况和特定机组状态组合下,叶片容易发生由动态失速导致的振荡现象,极大威胁叶片疲劳寿命和机组安全性。根据IEC 61400-1规范中的要求,机组处于空转停机状态,应考虑极端风速模型(EWM)。针对叶片长度分别为92、97、112 m 3款叶片进行建模分析,研究机组发生失速振荡的内在规律和抑制手段。通过对机组在0~360°风向、场址极端风速以及降低风况条件进行Bladed仿真,发现3款机组均在1只叶片竖直向下位置附近、风向30°和330°附近容易发生叶片失速振荡现象。基于失速振荡发生较为集中的工况,通过调整桨距角能够实现对振荡幅值的抑制;针对不同气动外形,抑制效果有一定差别。