期刊文献+
共找到508篇文章
< 1 2 26 >
每页显示 20 50 100
基于坐标注意力机制增强的CenterNet模型在烟草甲检测中的应用
1
作者 孙俊峰 王保录 +1 位作者 黄琰淦 黄滔 《湖北农业科学》 2024年第11期191-196,215,共7页
通过在CenterNet模型中引入坐标注意力机制,使CAM-CenterNet模型更多地关注对烟草甲(Lasioderma serricorne)(以下简称烟虫)表征能力好的通道和位置,降低烟丝、烟末等杂质的干扰,将精确率(Precision)、召回率(Recall)、平均精度(mAP)、... 通过在CenterNet模型中引入坐标注意力机制,使CAM-CenterNet模型更多地关注对烟草甲(Lasioderma serricorne)(以下简称烟虫)表征能力好的通道和位置,降低烟丝、烟末等杂质的干扰,将精确率(Precision)、召回率(Recall)、平均精度(mAP)、每秒帧率(FPS)以及模型参数量(Params size)作为评价指标,对CAM-CenterNet模型、CenterNet模型、YOLOv3模型和Faster R-CNN模型的烟虫检测性能进行对比。结果表明,在召回率和平均精度方面,YOLOv3模型表现最好,CAM-CenterNet模型稍落后于YOLOv3模型,但高于其他模型;在帧率方面,CAM-CenterNet模型检测烟虫图像的速度较YOLOv3模型更快,且模型参数量更少,对设备配置要求更低。在检测个体较小的烟虫时,CAM-CenterNet模型的烟虫检出数量高于Faster R-CNN模型、YOLOv3模型。CAM-CenterNet模型不仅能更多地关注烟虫目标特征,而且能很好地抑制烟丝、烟末等杂质带来的干扰,实现烟虫的有效检测。CAM-CenterNet模型能满足卷烟厂对烟虫检测速度和精度的要求,可以为烟厂的烟虫整治提供技术支持。 展开更多
关键词 坐标注意力机制 CenterNet模型 CAM-CenterNet模型 烟草甲(Lasioderma serricorne)检测
下载PDF
融合坐标与多头注意力机制的交互语音情感识别 被引量:1
2
作者 高鹏淇 黄鹤鸣 樊永红 《计算机应用》 CSCD 北大核心 2024年第8期2400-2406,共7页
语音情感识别(SER)是人机交互系统中一项重要且充满挑战性的任务。针对目前SER系统中存在特征单一和特征间交互性较弱的问题,提出多输入交互注意力网络MIAN。该网络由特定特征坐标残差注意力网络和共享特征多头注意力网络两个子网络组... 语音情感识别(SER)是人机交互系统中一项重要且充满挑战性的任务。针对目前SER系统中存在特征单一和特征间交互性较弱的问题,提出多输入交互注意力网络MIAN。该网络由特定特征坐标残差注意力网络和共享特征多头注意力网络两个子网络组成。前者利用Res2Net和坐标注意力模块学习从原始语音中获取的特定特征,并生成多尺度特征表示,增强模型对情感相关信息的表征能力;后者融合前向网络所获取的特征,组成共享特征,并经双向长短时记忆(BiLSTM)网络输入至多头注意力模块,能同时关注不同特征子空间中的相关信息,增强特征之间的交互性,以捕获判别性强的特征。通过2个子网络间的协同作用,能增加模型特征的多样性,增强特征之间的交互能力。在训练过程中,应用双损失函数共同监督,使同类样本更紧凑、不同类样本更分离。实验结果表明,MIAN在EMO-DB和IEMOCAP语料库上分别取得了91.43%和76.33%的加权平均精度,相较于其他主流模型,具有更好的分类性能。 展开更多
关键词 语音情感识别 坐标注意力机制 多头注意力机制 特定特征学习 共享特征学习
下载PDF
基于空间金字塔注意力机制残差网络的高光谱图像分类
3
作者 刘和 宋璎珞 +3 位作者 胡龙湘 刘国辉 王侃 王爱丽 《液晶与显示》 CAS CSCD 北大核心 2024年第6期833-843,共11页
为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型。首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征... 为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型。首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征。然后利用空间金字塔注意力模型实现多尺度联合特征关注,提升对联合特征的敏感性,并有效地强调并聚焦空间和光谱信息,实现信息交互。最后经过Softmax分类器获得分类标签。本文提出的方法在MUUFL和Tento数据集上进行了实验,结果表明,本文算法的总体分类精度分别达到了94.08%和98.32%。相比于其他高光谱分类模型,本文模型的收敛速度较快,在分类性能上取得了明显的提升,获得了更高的地物分类精度。 展开更多
关键词 高光谱 图像分类 注意力机制 空间-光谱特征
下载PDF
基于卷积神经网络与通道和空间注意力机制的房颤预测模型研究
4
作者 王量弘 蔡冰洁 +3 位作者 刘硕 杨涛 王新康 高洁 《福建医药杂志》 CAS 2024年第1期1-4,共4页
目的采用人工智能技术提出一种模型,以对房颤进行早期预防和诊断。方法提出一种基于卷积神经网络(convolutional neural network,CNN)与通道和空间注意力机制(convolutional block attention module,CBAM)的模型用于对房颤的诊断与预测... 目的采用人工智能技术提出一种模型,以对房颤进行早期预防和诊断。方法提出一种基于卷积神经网络(convolutional neural network,CNN)与通道和空间注意力机制(convolutional block attention module,CBAM)的模型用于对房颤的诊断与预测。结果根据长期心房颤动数据库、MIT-BIH心房颤动数据库和MIT-BIH正常窦性心律数据库的数据,提出的模型在全盲的情况下总体准确率达94.2%。结论提出的模型满足了医学心电图解释的需要,为房颤的预测研究提供了新思路。 展开更多
关键词 心电信号 房颤 卷积神经网络 通道和空间注意力机制
下载PDF
采用空间和通道激励注意力机制优化ResNet-50的CFRP/TC4叠层材料钻削刀具磨损状态监测
5
作者 聂鹏 杨程越 +2 位作者 彭新月 于家鹤 潘五九 《中国机械工程》 EI CAS CSCD 北大核心 2024年第10期1793-1801,共9页
针对碳纤维增强复合材料(CFRP)与钛合金组成的叠层材料在制备装配孔时存在刀具磨损严重的问题,提出了一种空间和通道激励注意力机制(scSE)优化深度残差神经网络(ResNet-50)的刀具磨损监测方法。开展钻削实验,采集钻削过程中的力和温度信... 针对碳纤维增强复合材料(CFRP)与钛合金组成的叠层材料在制备装配孔时存在刀具磨损严重的问题,提出了一种空间和通道激励注意力机制(scSE)优化深度残差神经网络(ResNet-50)的刀具磨损监测方法。开展钻削实验,采集钻削过程中的力和温度信号,信号经连续小波变换转换为小波尺度谱。搭建ResNet-50网络结构,从空间和通道双维度对卷积提取的特征图进行权重标定。研究结果表明,scSE可以从空间和通道两个维度做到增强有用特征,抑制无用特征,经scSE优化的网络结构识别准确度达到96.15%。 展开更多
关键词 刀具磨损 连续小波变换 空间和通道激励注意力机制 深度残差神经网络
下载PDF
数字信号调制识别下坐标注意力机制方案研究
6
作者 张兢 兰思源 +1 位作者 曹阳 彭小峰 《无线电工程》 2024年第6期1398-1406,共9页
针对低信噪比下神经网络难以提取数字信号空间特征的问题,提出一种基于坐标注意力机制的数字信号识别方案。将8种数字信号进行正交调制,根据其幅度、相位信息序列进行预编码处理,在不同的训练步长下,提取分析数字信号幅度和相位的关键特... 针对低信噪比下神经网络难以提取数字信号空间特征的问题,提出一种基于坐标注意力机制的数字信号识别方案。将8种数字信号进行正交调制,根据其幅度、相位信息序列进行预编码处理,在不同的训练步长下,提取分析数字信号幅度和相位的关键特征,选取合适的神经网络超参数,使网络达到拟合面。坐标注意力机制将数字信号特征进行2个一维特征编码,分别沿纵向和横向捕获幅度和相位的远程依赖关系;将生成的数字信号特征编码为一对方向感知和位置敏感的权重系数,进行数字信号特征的重标定。仿真结果表明,8种数字信号下,调制方式识别率高于95%时,卷积神经网络(Convolutional Neural Network,CNN)中坐标注意力机制信噪比增益约为4 dB,残差神经网络中坐标注意力机制信噪比增益约为8 dB。坐标注意力机制取得了较高的识别率以及更好的信噪比增益,与通道注意力机制、空间注意力机制相比更适用于数字信号解调的应用。 展开更多
关键词 数字信号 调制识别 坐标注意力机制 权重系数
下载PDF
基于坐标注意力机制和残差网络的苹果外观品质检测
7
作者 齐永兰 李仁惠 李学伟 《现代食品》 2024年第10期193-195,共3页
随着机器视觉技术的发展,利用卷积神经网络实现苹果品质分级已成为较优的应用技术。本研究以苹果外观品质特征为对象,提出了一种基于残差神经网络和坐标注意力机制的苹果品质检测方法。实验结果显示,引入坐标注意力机制后的Res Net18网... 随着机器视觉技术的发展,利用卷积神经网络实现苹果品质分级已成为较优的应用技术。本研究以苹果外观品质特征为对象,提出了一种基于残差神经网络和坐标注意力机制的苹果品质检测方法。实验结果显示,引入坐标注意力机制后的Res Net18网络模型平均准确率达到91.4%,损失值为0.1。该方法在各项性能上优于ResNet18、34、50网络模型,能够有效实现苹果品质分级。 展开更多
关键词 坐标注意力机制 残差神经网络 机器视觉 水果分级
下载PDF
基于改进卷积注意力机制的触觉图像识别 被引量:5
8
作者 熊鹏文 陈志远 +1 位作者 廖俊杰 宋爱国 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期175-182,共8页
为了改善传统轻量化网络对触觉图像全局特征提取能力差的问题,提出一种基于轻量化网络提高触觉图像感知分类的新算法,通过将卷积块注意力模块(CBAM)引入坐标注意力机制(CA)来增强特征信息表达能力.利用CA采取空间全局信息并嵌入通道注意... 为了改善传统轻量化网络对触觉图像全局特征提取能力差的问题,提出一种基于轻量化网络提高触觉图像感知分类的新算法,通过将卷积块注意力模块(CBAM)引入坐标注意力机制(CA)来增强特征信息表达能力.利用CA采取空间全局信息并嵌入通道注意中,使卷积网络能够在较全面的区域捕获注意力权重.结果表明:所提算法优于现有轻量化网络算法;该算法对GelSight数据集、多模态传感器数据集2种触觉图像进行分类识别测试,在分类表现中分辨正确率分别达到了88.2%和94.4%;相比于传统的CBAM注意力模型、自注意力模型(SENet)和仅有LeNet的神经网络,该算法对触觉图像的识别能力在GelSight数据集上分别提高了8.7%、8.7%和3.0%,在多模态传感器数据集上分别提高了13.3%、13.4%和4.8%. 展开更多
关键词 触觉图像 轻量化 注意力机制 坐标注意力
下载PDF
基于多尺度与坐标注意力机制的交通标志识别研究
9
作者 胡腾 杨毅强 +2 位作者 邹显迪 孙潇 毛国斌 《齐齐哈尔大学学报(自然科学版)》 2024年第5期8-15,共8页
针对智能交通识别系统需要具备较高的检测速度和识别精度的要求,在YOLOv4-tiny算法的基础上提出一种基于多尺度与坐标注意力机制融合的改进型轻量化YOLOv4-3RSCtiny算法。首先将主干网络中的Resblock_body模块改进为参数量更少的Resblo... 针对智能交通识别系统需要具备较高的检测速度和识别精度的要求,在YOLOv4-tiny算法的基础上提出一种基于多尺度与坐标注意力机制融合的改进型轻量化YOLOv4-3RSCtiny算法。首先将主干网络中的Resblock_body模块改进为参数量更少的ResblockD轻量化模块,用于提高算法的检测速度;其次引入特征金字塔池化网络,丰富深层特征图的空间信息,在预测阶段引入坐标注意力机制,降低背景信息的干扰;最后利用具有多次跨级融合的路径增强特征金字塔网络,提高算法对小型目标物体的识别率。在TT100K数据集上进行测试,实验结果表明,相较于YOLOv4-tiny算法,YOLOv4-3RSCtiny算法具有较高的准确性和较好的实时性。 展开更多
关键词 ResblockD模块 特征金字塔池化网络 路径增强特征金字塔网络 坐标注意力机制
下载PDF
基于端口注意力与通道空间注意力的网络异常流量检测 被引量:2
10
作者 肖斌 甘昀 +2 位作者 汪敏 张兴鹏 王照星 《计算机应用》 CSCD 北大核心 2024年第4期1027-1034,共8页
网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端... 网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端口注意力模块(PAM)和通道空间注意力模块(CBAM)的网络异常流量检测模型。首先,将原始网络流量作为PAM的输入,分离得到端口号属性送入全连接层,得到学习后的端口注意力权重值,并与其他流量属性点乘,输出端口注意力后的流量数据;其次,将流量数据转换成灰度图,利用CNN和CBAM更充分地提取特征图在通道和空间上的信息;最后,使用焦点损失函数解决数据不平衡的问题。所提PAM具有参数量少、即插即用和普遍适用的优点。在CICIDS2017数据集上,所提模型的异常流量检测二分类任务准确率为99.18%,多分类任务准确率为99.07%,对只有少数训练样本的类别也有较高的识别率。 展开更多
关键词 异常流量检测 注意力机制 数据不平衡 轻量级网络 通道空间注意力模块
下载PDF
基于融合注意力机制LSTM网络的地下水位自适应鲁棒预测 被引量:3
11
作者 佃松宜 厉潇滢 +2 位作者 杨丹 芮胜阳 郭斌 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第1期54-64,共11页
地下水水位是旱天污水管网地下水入渗量的重要影响因素,快速精准地预测地下水水位能有效提升旱天污水管网地下水入渗量估算准确度,辅助优化管网病害治理与维护策略。针对目前城市复杂水文预测存在的准确度低、灵敏度低、泛化能力弱等问... 地下水水位是旱天污水管网地下水入渗量的重要影响因素,快速精准地预测地下水水位能有效提升旱天污水管网地下水入渗量估算准确度,辅助优化管网病害治理与维护策略。针对目前城市复杂水文预测存在的准确度低、灵敏度低、泛化能力弱等问题,本文提出了一种新的鲁棒自适应水位预测算法。首先,对水文数据进行预处理,解决了数据时间跨度大、噪声多、缺失及异常、非平稳等问题。其次,针对不同输入特征对预测指标的影响,在模型训练阶段提出一种新的空间变量注意机制,可快速识别与水位关联的关键变量,并对输入特征赋予不同的影响权重。然后,针对不同序列长度对预测效果的影响,还设计了自适应时间注意力机制,帮助网络自适应地找出与不同时间序列长度预测指标相关的编码器隐藏状态,以更好地捕捉时间上的依赖关系。在此基础上,以上下文向量作为输入,提出一种融合注意力机制的长短时记忆网络水文预测算法。最后,通过意大利Petrignano水文数据验证了所提算法的有效性,并与GRU、Elman、LSTM、VA–LSTM和S–LSTM等方法进行预测性能比较。结果表明,基于融合注意力机制的LSTM网络在面临大规模、噪点多的复杂数据时有优于其它几种算法的预测效果,表明该算法具有强自适应性和鲁棒性。本文研究结果可以为市政排水策略合理调整、及时控制提供参考。 展开更多
关键词 地下水位预测 时间与空间注意力机制 LSTM网络 自适应预测 鲁棒预测
下载PDF
基于边缘特征和注意力机制的图像语义分割
12
作者 王军 张霁云 程勇 《计算机系统应用》 2024年第7期63-73,共11页
在语义分割任务中,编码器的下采样过程会导致分辨率降低,造成图像空间信息细节的丢失,因此在物体边缘会出现分割不连续或者错误分割的现象,进而对整体分割性能产生负面影响.针对上述问题,提出基于边缘特征和注意力机制的图像语义分割模... 在语义分割任务中,编码器的下采样过程会导致分辨率降低,造成图像空间信息细节的丢失,因此在物体边缘会出现分割不连续或者错误分割的现象,进而对整体分割性能产生负面影响.针对上述问题,提出基于边缘特征和注意力机制的图像语义分割模型EASSNet.首先,使用边缘检测算子计算原始图像的边缘图,通过池化下采样和卷积运算提取边缘特征.接着,将边缘特征融合到经过编码器提取的深层语义特征当中,恢复经过下采样的特征图像的空间细节信息,并且通过注意力机制来强化有意义的信息,从而提高物体边缘分割的准确性,进而提升语义分割的整体性能.最后,EASSNet在PASCAL VOC 2012和Cityscapes数据集上的平均交并比分别达到85.9%和76.7%,与当前流行的语义分割网络相比,整体分割性能和物体边缘的分割效果都具有明显优势. 展开更多
关键词 语义分割 空间细节信息 边缘特征 特征融合 注意力机制
下载PDF
基于ResNet和双注意力机制的赤足图像年龄预测
13
作者 张涛 韩晓雪 +2 位作者 成文超 王慧 王宇轩 《辽宁师范大学学报(自然科学版)》 CAS 2024年第2期174-183,共10页
足迹是人在行走时足部与地面等客体接触时所留下的痕迹,也是犯罪现场嫌疑人最容易遗留的生物特征之一,它隐含着人体的身高、体重、性别和年龄等身份属性信息,利用足迹信息进行人的年龄预测,对指明侦察方向和缩小侦察范围有着极其重要的... 足迹是人在行走时足部与地面等客体接触时所留下的痕迹,也是犯罪现场嫌疑人最容易遗留的生物特征之一,它隐含着人体的身高、体重、性别和年龄等身份属性信息,利用足迹信息进行人的年龄预测,对指明侦察方向和缩小侦察范围有着极其重要的意义.传统侦查工作中,刑侦专家会依据积累的案件经验,依据现场遗留的足迹进行嫌疑人身份和属性的预测,但这个过程需要大量的领域知识,据此,提出了基于赤足图像的年龄自动预测方法,其由伪彩色变换模块、在线随机几何变换模块、特征提取模块、空间注意力模块和年龄预测模块组成.算法在由1 818幅赤足灰度图像组成的数据集上进行了测试,预测准确率指标Acc_5和Acc_10分别达到了55.5%和83.4%,优于现有的年龄预测方法. 展开更多
关键词 年龄预测 赤足图像 ResNet18网络 瓶颈注意力机制 空间注意力机制
下载PDF
结合残差与双注意力机制的U-Net语音增强方法
14
作者 许春冬 王磊 +2 位作者 胡菁兰 闵源 徐锦武 《计算机工程与设计》 北大核心 2024年第11期3383-3389,共7页
针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注... 针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注意力机制,减少时频特征提取中的细节信息丢失;在网络中融入空洞空间金字塔池化结构,在低参数量情况下融合不同尺度上下文背景信息,提高模型特征捕获能力。实验结果表明,DA-Res-Unet网络模型在可见噪声测试集上的PESQ、STOI和LSD这3种评测指标取得了不同程度的提升,在未知噪声测试集上具备一定优势。 展开更多
关键词 语音增强 深度学习 残差网络 特征提取 编解码结构 注意力机制 空洞空间池化金字塔
下载PDF
结合结构重参数化方法与空间注意力机制的图像融合模型 被引量:7
15
作者 俞利新 崔祺 +3 位作者 车军 许悦雷 张凡 李帆 《计算机应用研究》 CSCD 北大核心 2022年第5期1573-1578,1600,共7页
针对深度学习在红外与可见光图像融合时无法同时满足运算效率和融合效果的问题,提出了一种无监督端到端的红外与可见光图像融合模型。该模型的图像特征提取模块采用结构重参数化方法,有效提升了算法的运行效率;同时引入了注意力机制,减... 针对深度学习在红外与可见光图像融合时无法同时满足运算效率和融合效果的问题,提出了一种无监督端到端的红外与可见光图像融合模型。该模型的图像特征提取模块采用结构重参数化方法,有效提升了算法的运行效率;同时引入了注意力机制,减小了冗余信息对融合结果的干扰;损失函数基于结构相似度设计。对比实验结果表明,该模型保证了融合效果并提升了运行速度,相比于不使用结构重参数化的方法,运行速度提升了34%。 展开更多
关键词 结构重参数化 端到端 空间注意力机制 无监督学习 结构相似度
下载PDF
基于坐标注意力机制融合的反无人机系统图像识别方法 被引量:7
16
作者 薛珊 陈宇超 +1 位作者 吕琼莹 曹国华 《红外与激光工程》 EI CSCD 北大核心 2022年第9期407-417,共11页
反无人机系统是识别和打击“黑飞”无人机的有效手段,图像识别无人机是反无人机系统的关键之一。针对采集的无人机样本属于小样本、提取特征不够多,识别准确率不够高的问题,提出了一种基于迁移学习、密集卷积网络和坐标注意力机制融合... 反无人机系统是识别和打击“黑飞”无人机的有效手段,图像识别无人机是反无人机系统的关键之一。针对采集的无人机样本属于小样本、提取特征不够多,识别准确率不够高的问题,提出了一种基于迁移学习、密集卷积网络和坐标注意力机制融合的反无人机系统图像识别方法。首先,运用自制设备采集了多种无人机在不同背景下的图片,建立数据样本;其次,设计针对无人机小样本识别的基于迁移学习、坐标注意力机制和密集卷积网络融合的网络TL-CA4-DenseNet-121、基于通道注意力机制融合的网络TL-SE4-DenseNet-121等网络,运用设计的网络对小样本进行识别,并进行对比,然后分别进行了基于不同位置和不同个数的坐标注意力模块和通道注意力模块的网络识别实验;最后,将识别效果最优的网络与经典卷积神经网络模型进行对比实验。实验结果表明,提出的TL-CA4-DenseNet-121网络识别效果优于其他网络,识别的平均准确率为97.93%,F1-Score为0.982 6,网络训练时间为6 832 s。结果表明了该网络在识别小样本无人机方面的优越性和可行性。 展开更多
关键词 无人机 图像识别 坐标注意力机制 密集卷积网络
下载PDF
基于阶梯型特征空间分割与局部注意力机制的行人重识别 被引量:7
17
作者 石跃祥 周玥 《电子与信息学报》 EI CSCD 北大核心 2022年第1期195-202,共8页
为了让网络捕捉到更有效的内容来进行行人的判别,该文提出一种基于阶梯型特征空间分割与局部分支注意力网络(SLANet)机制的多分支网络来关注局部图像的显著信息。首先,在网络中引入阶梯型分支注意力模块,该模块以阶梯型对特征图进行水... 为了让网络捕捉到更有效的内容来进行行人的判别,该文提出一种基于阶梯型特征空间分割与局部分支注意力网络(SLANet)机制的多分支网络来关注局部图像的显著信息。首先,在网络中引入阶梯型分支注意力模块,该模块以阶梯型对特征图进行水平分块,并且使用了分支注意力给每个分支分配不同的权重。其次,在网络中引入多尺度自适应注意力模块,该模块对局部特征进行处理,自适应调整感受野尺寸来适应不同尺度图像,同时融合了通道注意力和空间注意力筛选出图像重要特征。在网络的设计上,使用多粒度网络将全局特征和局部特征进行结合。最后,该方法在3个被广泛使用的行人重识别数据集Market-1501,DukeMTMC-reID和CUHK03上进行验证。其中在Market-1501数据集上的mAP和Rank-1分别达到了88.1%和95.6%。实验结果表明,该文所提出的网络模型能够提高行人重识别准确率。 展开更多
关键词 行人重识别 特征空间分割 注意力机制 局部特征
下载PDF
基于空间域注意力机制的车间人员检测方法 被引量:4
18
作者 李成严 马金涛 赵帅 《哈尔滨理工大学学报》 CAS 北大核心 2022年第2期92-98,共7页
车间人员检测是指使用目标检测技术对工厂生产车间内相应区域进行人员检测,保障生产车间内人员生命健康安全。车间内人员检测存在图像模糊、检测效率低、实时性要求高等问题,将改进的暗通道优先处理策略用于图像增强、用空间域注意力机... 车间人员检测是指使用目标检测技术对工厂生产车间内相应区域进行人员检测,保障生产车间内人员生命健康安全。车间内人员检测存在图像模糊、检测效率低、实时性要求高等问题,将改进的暗通道优先处理策略用于图像增强、用空间域注意力机制相结合的SSD(Single Shot MultiBox Detector)网络提高检测效率,同时保障实时性要求,并在本文测试集及VOC2012数据集上进行验证,结果显示出较好的定位效果及检测率。 展开更多
关键词 车间人员检测 SSDSN网络 空间注意力机制 暗通道优先策略 区域划分
下载PDF
混合坐标注意力与改进空间金字塔池化融合的物体位姿估计 被引量:2
19
作者 党选举 李启煌 《国外电子测量技术》 北大核心 2023年第1期178-186,共9页
在物体杂乱放置非遮挡和遮挡构成的复杂场景下,针对位姿实时、准确和稳定地估计的问题,提出了混合坐标注意力与改进空间金字塔池化融合的目标位姿估计算法。搭建了由坐标特征、通道特征和空间特征组成的混合坐标注意力残差模块,有效提... 在物体杂乱放置非遮挡和遮挡构成的复杂场景下,针对位姿实时、准确和稳定地估计的问题,提出了混合坐标注意力与改进空间金字塔池化融合的目标位姿估计算法。搭建了由坐标特征、通道特征和空间特征组成的混合坐标注意力残差模块,有效提高了关键点估计的准确率。改进了空间金字塔池化网络,并通过颈部位置的多尺度特征细化方法,获得边缘姿态及空间位置的高精确估计。将所制作的遮挡数据集,进一步验证所提出算法性能和泛化能力。在公开LineMod及Partial Occlusion遮挡数据集上,所提算法与基于组特征注意力(SA)算法相比ADD指标分别提高2.26%和2.57%,5cm5°指标分别提高5.16%和4.1%,达到了30 fps实时处理速度,为遮挡等复杂场景下的物体位姿估计提供一个有效的方法。 展开更多
关键词 遮挡 混合坐标注意力 空间金字塔池化 位姿估计
下载PDF
融合空洞空间金字塔池化和注意力的轻量化遥感影像道路提取 被引量:1
20
作者 刘志恒 岳子腾 +3 位作者 周绥平 江澄 节永师 陈雪梅 《航天返回与遥感》 CSCD 北大核心 2024年第1期111-122,共12页
针对高分辨率遥感影像中道路形状结构错综复杂,出现窄小型道路提取错误或漏分的问题,提出一种基于空洞空间金字塔池化和注意力机制的轻量化遥感影像道路提取方法。首先,在原始高分辨率网络(HRNet)基础上,通过引入空洞空间金字塔池化模块... 针对高分辨率遥感影像中道路形状结构错综复杂,出现窄小型道路提取错误或漏分的问题,提出一种基于空洞空间金字塔池化和注意力机制的轻量化遥感影像道路提取方法。首先,在原始高分辨率网络(HRNet)基础上,通过引入空洞空间金字塔池化模块,实现多尺度道路信息融合;再引入挤压激励通道注意力机制,增强网络特征表征质量;最后使用深度可分离卷积方法改进网络残差模块实现模型轻量化,以降低模型计算复杂度。在公开数据集上进行了模型性能测试,实验结果表明,文章所提算法的准确率、精确率、召回率、F1分数和平均交并比,相比原始HRNet分别提升了5.35%、2.15%、4.1%、3.15%和14.34%,且减少了36.1%的参数数量;相比其他网络,该算法突出了细小道路的特征,道路预测结果连续性、完整性好,并且模型小易于部署在实时检测设备中,有效改善了道路提取任务中错分和缺失的情况,是一种适应性更强、分割精度更高、更轻量化的多尺度道路提取算法。 展开更多
关键词 道路提取 空间金字塔池化 通道注意力机制 可分离卷积 高分辨率网络 遥感影像
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部