为了更好地研究厄尔尼诺事件对南海(South China Sea,SCS)温跃层深度(Thermocline Depth,TD)的影响,基于再分析资料,本文分析了1958—2010年南海温跃层深度对厄尔尼诺事件响应的空间特征。分析表明,在厄尔尼诺事件期间,南海温跃层深度...为了更好地研究厄尔尼诺事件对南海(South China Sea,SCS)温跃层深度(Thermocline Depth,TD)的影响,基于再分析资料,本文分析了1958—2010年南海温跃层深度对厄尔尼诺事件响应的空间特征。分析表明,在厄尔尼诺事件期间,南海温跃层深度异常存在空间分布不对称性,这种不对称性主要表现为南北不对称性。与中部型厄尔尼诺事件相比,南海温跃层深度对东部型厄尔尼诺事件的响应要更强。西北太平洋异常反气旋(Western North Pacific Anomalous Anticyclone, WNPAC)是连接厄尔尼诺现象和南海风场异常的重要桥梁。厄尔尼诺事件通过WNPAC使得南海风场异常具有南北不对称性,再进一步导致温跃层深度异常的南北不对称性;WNPAC的差异以及WNPAC导致的南海风场的差异是南海温跃层深度在不同厄尔尼诺事件中存在差异的关键原因。展开更多
The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonl...The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=order conditional Lie-B^icklund symmetries of the equations. As a consequence, a number of new solutions to the inhomogeneous nonlinear diffusion equations are constructed explicitly or reduced to solving finite-dimensional dynamical sys- tems.展开更多
文摘为了更好地研究厄尔尼诺事件对南海(South China Sea,SCS)温跃层深度(Thermocline Depth,TD)的影响,基于再分析资料,本文分析了1958—2010年南海温跃层深度对厄尔尼诺事件响应的空间特征。分析表明,在厄尔尼诺事件期间,南海温跃层深度异常存在空间分布不对称性,这种不对称性主要表现为南北不对称性。与中部型厄尔尼诺事件相比,南海温跃层深度对东部型厄尔尼诺事件的响应要更强。西北太平洋异常反气旋(Western North Pacific Anomalous Anticyclone, WNPAC)是连接厄尔尼诺现象和南海风场异常的重要桥梁。厄尔尼诺事件通过WNPAC使得南海风场异常具有南北不对称性,再进一步导致温跃层深度异常的南北不对称性;WNPAC的差异以及WNPAC导致的南海风场的差异是南海温跃层深度在不同厄尔尼诺事件中存在差异的关键原因。
基金supported by National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.10925104)the PhD Programs Foundation of Ministry of Education of China(Grant No.20106101110008)the United Funds of NSFC and Henan for Talent Training(Grant No.U1204104)
文摘The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=order conditional Lie-B^icklund symmetries of the equations. As a consequence, a number of new solutions to the inhomogeneous nonlinear diffusion equations are constructed explicitly or reduced to solving finite-dimensional dynamical sys- tems.