The paper considers the problem of representing non-Markovian systems that evolve stochastically over time. It is often necessary to use approximations in the case the system is non-Markovian. Phase type distribution ...The paper considers the problem of representing non-Markovian systems that evolve stochastically over time. It is often necessary to use approximations in the case the system is non-Markovian. Phase type distribution is by now indispensable tool in creation of stochastic system models. The paper suggests a method and software for evaluating stochastic systems approximations by Markov chains with continuous time and countable state space. The performance of a system is described in the event language used for generating the set of states and transition matrix between them. The example of a numerical model is presented.展开更多
文摘The paper considers the problem of representing non-Markovian systems that evolve stochastically over time. It is often necessary to use approximations in the case the system is non-Markovian. Phase type distribution is by now indispensable tool in creation of stochastic system models. The paper suggests a method and software for evaluating stochastic systems approximations by Markov chains with continuous time and countable state space. The performance of a system is described in the event language used for generating the set of states and transition matrix between them. The example of a numerical model is presented.