Precision Agriculture, also known as Precision Farming, or Prescription Farming, is a modern agriculture technology system, which brings ' precision' into agriculture system. All concepts of Precision Agricult...Precision Agriculture, also known as Precision Farming, or Prescription Farming, is a modern agriculture technology system, which brings ' precision' into agriculture system. All concepts of Precision Agriculture are established on the collection and management of variable cropland information. As the tool of collecting, managing and analyzing spatial data, GIS is the key technology of integrated Precision Agriculture system. This article puts forward the concept of Farmland GIS and designs Farmland GIS into five modules, and specifies the functions of the each module, which builds the foundation for practical development of the software. The study and development of Farmland GIS will propel the spreading of Precision Agriculture technology in China.展开更多
Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial var...Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.展开更多
基金the Knowledge Innovation Project of the Chinese Academy of Sciences(No.NZCX2-412).
文摘Precision Agriculture, also known as Precision Farming, or Prescription Farming, is a modern agriculture technology system, which brings ' precision' into agriculture system. All concepts of Precision Agriculture are established on the collection and management of variable cropland information. As the tool of collecting, managing and analyzing spatial data, GIS is the key technology of integrated Precision Agriculture system. This article puts forward the concept of Farmland GIS and designs Farmland GIS into five modules, and specifies the functions of the each module, which builds the foundation for practical development of the software. The study and development of Farmland GIS will propel the spreading of Precision Agriculture technology in China.
文摘Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.