城市功能结构的探索对人们理解城市及城市规划有着重要的作用。兴趣点(point of interest,POI)数据作为城市设施的代表,被广泛应用于城市功能区提取。以往对城市功能区研究大多只考虑了POI统计信息,忽略了POI中丰富的空间分布信息,而PO...城市功能结构的探索对人们理解城市及城市规划有着重要的作用。兴趣点(point of interest,POI)数据作为城市设施的代表,被广泛应用于城市功能区提取。以往对城市功能区研究大多只考虑了POI统计信息,忽略了POI中丰富的空间分布信息,而POI空间分布特征与区域功能密切相关。本文利用空间共位模式挖掘方法挖掘POI潜在上下文关系,提取POI空间分布信息,构建区域特征向量,并进行区域聚类;再利用POI类别比例、居民的出行特征等对聚类结果进行识别。以北京市核心城市功能区为例,将研究结果与北京市百度地图、居民出行特征进行对比验证分析。试验表明,本文方法能识别出具有明显特征的城市功能区,如成熟的娱乐商业区、科教文化区、居住区等。同时,与基于POI语义信息的LDA方法及顾及POI线性空间关系的Word2Vec方法进行对比分析,证明了本文方法的优越性。展开更多
文摘城市功能结构的探索对人们理解城市及城市规划有着重要的作用。兴趣点(point of interest,POI)数据作为城市设施的代表,被广泛应用于城市功能区提取。以往对城市功能区研究大多只考虑了POI统计信息,忽略了POI中丰富的空间分布信息,而POI空间分布特征与区域功能密切相关。本文利用空间共位模式挖掘方法挖掘POI潜在上下文关系,提取POI空间分布信息,构建区域特征向量,并进行区域聚类;再利用POI类别比例、居民的出行特征等对聚类结果进行识别。以北京市核心城市功能区为例,将研究结果与北京市百度地图、居民出行特征进行对比验证分析。试验表明,本文方法能识别出具有明显特征的城市功能区,如成熟的娱乐商业区、科教文化区、居住区等。同时,与基于POI语义信息的LDA方法及顾及POI线性空间关系的Word2Vec方法进行对比分析,证明了本文方法的优越性。