This paper presents a feature extraction and correspondence algorithm which employs a novel feature transform. Unlike conventional approaches such as Hough Transform, we employ a robust but simple approach to extract ...This paper presents a feature extraction and correspondence algorithm which employs a novel feature transform. Unlike conventional approaches such as Hough Transform, we employ a robust but simple approach to extract the geometrical feature under real dynamic world conditions. Multi-threshold segmentation and the split-and-merge method are employed to interpret geometrical features such as edge, concave corners, convex corners, and segments in a unified framework. The features are represented by feature tree (F-Tree) so as to compactly represent the environments and some important properties of the F-Tree are discussed in this paper. To demonstrate the validity of the approach, we show the actual experiment results which are based on real Laser Range Finder data and real time analysis. The comparative study with Hough Transform shows the advantages and the high performance of the proposed algorithm.展开更多
Based on the observation that there exists multiple information in a pixel neighbor,such as distance sum and gray difference sum,local information enhanced LBP(local binary pattern)approach,i.e.LE-LBP,is presented.Geo...Based on the observation that there exists multiple information in a pixel neighbor,such as distance sum and gray difference sum,local information enhanced LBP(local binary pattern)approach,i.e.LE-LBP,is presented.Geometric information of the pixel neighborhood is used to compute minimum distance sum.Gray variation information is used to compute gray difference sum.Then,both the minimum distance sum and the gray difference sum are used to build a feature space.Feature spectrum of the image is computed on the feature space.Histogram computed from the feature spectrum is used to characterize the image.Compared with LBP,rotation invariant LBP,uniform LBP and LBP with local contrast,it is found that the feature spectrum image from LE-LBP contains more details,however,the feature vector is more discriminative.The retrieval precision of the system using LE-LBP is91.8%when recall is 10%for bus images.展开更多
We prove the following main result: Let X be a normed linear space,fn ∈ X*\{θ},Hn = {x ∈ X: fn(x) = l},n = 0, 1,2,...Then w* - limfn = f0 iff H0 lim inf Hn and θ limsup Hn; when X is a reflexive Banach space, l...We prove the following main result: Let X be a normed linear space,fn ∈ X*\{θ},Hn = {x ∈ X: fn(x) = l},n = 0, 1,2,...Then w* - limfn = f0 iff H0 lim inf Hn and θ limsup Hn; when X is a reflexive Banach space, lim ||fn - f0|| = 0. If and only if θ w-limsup Hn Ho It simplifies the related results in [1].展开更多
文摘This paper presents a feature extraction and correspondence algorithm which employs a novel feature transform. Unlike conventional approaches such as Hough Transform, we employ a robust but simple approach to extract the geometrical feature under real dynamic world conditions. Multi-threshold segmentation and the split-and-merge method are employed to interpret geometrical features such as edge, concave corners, convex corners, and segments in a unified framework. The features are represented by feature tree (F-Tree) so as to compactly represent the environments and some important properties of the F-Tree are discussed in this paper. To demonstrate the validity of the approach, we show the actual experiment results which are based on real Laser Range Finder data and real time analysis. The comparative study with Hough Transform shows the advantages and the high performance of the proposed algorithm.
基金Project(61372176,51109112)supported by the National Natural Science Foundation of ChinaProject(2012M520277)supported by theChina Postdoctoral Science Foundation
文摘Based on the observation that there exists multiple information in a pixel neighbor,such as distance sum and gray difference sum,local information enhanced LBP(local binary pattern)approach,i.e.LE-LBP,is presented.Geometric information of the pixel neighborhood is used to compute minimum distance sum.Gray variation information is used to compute gray difference sum.Then,both the minimum distance sum and the gray difference sum are used to build a feature space.Feature spectrum of the image is computed on the feature space.Histogram computed from the feature spectrum is used to characterize the image.Compared with LBP,rotation invariant LBP,uniform LBP and LBP with local contrast,it is found that the feature spectrum image from LE-LBP contains more details,however,the feature vector is more discriminative.The retrieval precision of the system using LE-LBP is91.8%when recall is 10%for bus images.
文摘We prove the following main result: Let X be a normed linear space,fn ∈ X*\{θ},Hn = {x ∈ X: fn(x) = l},n = 0, 1,2,...Then w* - limfn = f0 iff H0 lim inf Hn and θ limsup Hn; when X is a reflexive Banach space, lim ||fn - f0|| = 0. If and only if θ w-limsup Hn Ho It simplifies the related results in [1].