Anthropogenic activities have become more and more important in characterizing the landscape, but their impacts are still restricted by natural environments. This paper discusses the interactions of anthropogenic acti...Anthropogenic activities have become more and more important in characterizing the landscape, but their impacts are still restricted by natural environments. This paper discusses the interactions of anthropogenic activity, vegetation activity and topography through describing the spatial distribution of land cover and vegetation activity (represented by Normalized Difference Vegetation Index, NDVI) along topographic gradient in a mountainous area of southwestern China. Our results indicate that the existing landscape pattern is controlled by anthropogenic activities as well as topographic factors. Intensive anthropogenic activities mainly occur in areas with relatively low elevation, gentle and concave slopes, as these areas are easy and convenient to attain for human. Because of the destruction by human, some land cover types (mainly grassland and shrub) are only found in relatively harsher environments. This study also finds that topographic wetness index (W) used in other places only reflects runoff generation capacity, but not indicate the real spatial pattern of soil water content in this area. The relationships between NDVI and W, and NDVI and length slope factor (LSF) show that runoff and erosion have complex effects on vegetation activity. Greater values of W and LSF will lead to stronger capacity to produce runoff and transport sediment, and thereby increase soil water content and soil deposition, whereas beyond a certain threshold runoff and erosion are so strong that they would destruct vegetation growth. This study provides information needed to successfully restore native vegetation, improve land management, and promote sustainable development in mountainous areas, especially for developing regions.展开更多
The Changbai Mountains, located in northeastern China, show clear vertical zonation of vegetation types. Six different habitats,namely Pinus koraiensis mixed broad-leaved forest, Pinus koraiensis-Picea forest, spruce-...The Changbai Mountains, located in northeastern China, show clear vertical zonation of vegetation types. Six different habitats,namely Pinus koraiensis mixed broad-leaved forest, Pinus koraiensis-Picea forest, spruce-fir forest, Betula ermanii forest, alpine meadow and alpine semi-desert, at elevations ranging from 780 to 2 480 m, covering almost all ecosystems on the north slope of the Changbai Mountains, were investigated to determine: i) whether or not the community composition of soil mesofauna varied significantly at different elevations; ii) if different soil mesofauna groups would respond differently to elevation and iii) which factors influenced the spatial distribution of soil mesofauna along elevation. Soil mesofauna were collected from each habitat in spring(May),summer(July) and autumn(September) of 2009. The soil mesofauna communities were comprised of at least 44 groups and were dominated by Acari and Collembola, followed by Coleoptera, Diptera larvae and Enchytraeidae. The composition, diversity and abundance of soil mesofauna varied among the six habitats. Meanwhile, significant seasonal variations were observed in the composition,abundance and diversity of the soil mesofauna in each habitat. The taxonomic richness and Shannon index were affected by elevation and soil properties, while the abundance was only significantly affected by soil properties. With regard to taxa, the habitats and seasons had significant effects on almost all the abundances of the major taxonomic groups. The abundance of more taxonomic groups was significantly influenced by the soil properties, while those of Geophilomorpha, Araneae and other taxa were affected by elevation.It is concluded that the composition and spatial distribution of the soil mesofauna varied along the elevation gradient on the north slope of the Changbai Mountains, which might be largely related to the variations of the plant community, soil properties and climate change resulting from the elevation gradient.展开更多
基金the National Natural Science Foundation of China (40621061)the Project of Chinese Academy of Sciences (KZCX2-XB2-02-31) for their financial support
文摘Anthropogenic activities have become more and more important in characterizing the landscape, but their impacts are still restricted by natural environments. This paper discusses the interactions of anthropogenic activity, vegetation activity and topography through describing the spatial distribution of land cover and vegetation activity (represented by Normalized Difference Vegetation Index, NDVI) along topographic gradient in a mountainous area of southwestern China. Our results indicate that the existing landscape pattern is controlled by anthropogenic activities as well as topographic factors. Intensive anthropogenic activities mainly occur in areas with relatively low elevation, gentle and concave slopes, as these areas are easy and convenient to attain for human. Because of the destruction by human, some land cover types (mainly grassland and shrub) are only found in relatively harsher environments. This study also finds that topographic wetness index (W) used in other places only reflects runoff generation capacity, but not indicate the real spatial pattern of soil water content in this area. The relationships between NDVI and W, and NDVI and length slope factor (LSF) show that runoff and erosion have complex effects on vegetation activity. Greater values of W and LSF will lead to stronger capacity to produce runoff and transport sediment, and thereby increase soil water content and soil deposition, whereas beyond a certain threshold runoff and erosion are so strong that they would destruct vegetation growth. This study provides information needed to successfully restore native vegetation, improve land management, and promote sustainable development in mountainous areas, especially for developing regions.
基金supported by the National Natural Science Foundation of China (Nos. 41471211 and 41171207)
文摘The Changbai Mountains, located in northeastern China, show clear vertical zonation of vegetation types. Six different habitats,namely Pinus koraiensis mixed broad-leaved forest, Pinus koraiensis-Picea forest, spruce-fir forest, Betula ermanii forest, alpine meadow and alpine semi-desert, at elevations ranging from 780 to 2 480 m, covering almost all ecosystems on the north slope of the Changbai Mountains, were investigated to determine: i) whether or not the community composition of soil mesofauna varied significantly at different elevations; ii) if different soil mesofauna groups would respond differently to elevation and iii) which factors influenced the spatial distribution of soil mesofauna along elevation. Soil mesofauna were collected from each habitat in spring(May),summer(July) and autumn(September) of 2009. The soil mesofauna communities were comprised of at least 44 groups and were dominated by Acari and Collembola, followed by Coleoptera, Diptera larvae and Enchytraeidae. The composition, diversity and abundance of soil mesofauna varied among the six habitats. Meanwhile, significant seasonal variations were observed in the composition,abundance and diversity of the soil mesofauna in each habitat. The taxonomic richness and Shannon index were affected by elevation and soil properties, while the abundance was only significantly affected by soil properties. With regard to taxa, the habitats and seasons had significant effects on almost all the abundances of the major taxonomic groups. The abundance of more taxonomic groups was significantly influenced by the soil properties, while those of Geophilomorpha, Araneae and other taxa were affected by elevation.It is concluded that the composition and spatial distribution of the soil mesofauna varied along the elevation gradient on the north slope of the Changbai Mountains, which might be largely related to the variations of the plant community, soil properties and climate change resulting from the elevation gradient.