In this paper, we discuss the relationship between k-semi-stratifiable spaces and quais-Nagata spaces and some mapping properties of quasi-Nagata spaces. We get following results: sequence-covering closed mapping pres...In this paper, we discuss the relationship between k-semi-stratifiable spaces and quais-Nagata spaces and some mapping properties of quasi-Nagata spaces. We get following results: sequence-covering closed mapping preserve quasi-Nagata spaces, and finite-to-one open mappings don't preserve quasi-Nagata spaces.展开更多
To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismi...To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismic sections and point out the differences between the two. We recognize that migration sections more often show spatial aliasing than stacked sections. Second, from wave propagation theory, I know that migration output is a new spatial sampling process and seismic prestack time migration can provide the high density sampling to prevent spatial aliasing on high resolution migration sections. Using a 2D seismic forward modeling analysis, I have found that seismic spatial aliasing noise can be eliminated by high density spatial sampling in prestack migration. In a 3D seismic data study for Daqing Oilfield in the Songliao Basin, I have also found that seismic sections obtained by high-density spatial sampling (10 ×10 m) in prestack migration have less spatial aliasing noise than those obtained by conventional low density spatial sampling (20 × 40 m) in prestack migration.展开更多
Let M(u) be an N function, A=D r+∑r-1k=0a k(x)D k a linear differential operator and W M(A) the Sobolev Orlicz class defined by M(u) and A. In this paper we give the asymptotic estimates...Let M(u) be an N function, A=D r+∑r-1k=0a k(x)D k a linear differential operator and W M(A) the Sobolev Orlicz class defined by M(u) and A. In this paper we give the asymptotic estimates of the n K width d n(W M(A),L 2[0,1]) .展开更多
In this paper, we introduce the A, weights into the tent space, many important results in the tent space are generalized. Also, new relations between the A, weights and Carleson measures are obtained.
According to the "jacking-up" theory, which relates the cause of earthquakes to outer core convection ascension bodies, the crust will gradually recover after an earthquake. In such cases, the crust is stretched, th...According to the "jacking-up" theory, which relates the cause of earthquakes to outer core convection ascension bodies, the crust will gradually recover after an earthquake. In such cases, the crust is stretched, the underground temperature is reduced, precipitation decreases, and drought occurs. In this paper, precipitation is compared with ground temperature and seismic data to determine the spatial and temporal relationship between earthquakes and subsequent droughts. Our objective is to develop a new method of drought prediction. With a few exceptions in location, the analysis of the first drought to occur after the Ms 〉 7 earthquakes in China's Mainland and the adjacent areas since 1950 shows that droughts tended to occur in regions near earthquake epicenters and in the eastern regions of the epicenters at the same latitude within six months after the earthquakes. In addition, and the differences between the starting time of the earthquakes and the droughts nearly share the same probability of 0 to 6 months. After careful analysis of 34 Ms 〉 6.5 earthquakes occurring in western China from 1980 to 2011, we determined that a second drought tends to occur approximately six months following the first drought, indicating a quasi-half-year period. Moreover, the duration of the quasi-half-year fluctuation increases with the magnitude of earthquake, at approximately 2.5 years for Ms 6.5 earthquake and approximately 5 years for Ms 8 earthquake.展开更多
Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods...Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.展开更多
文摘In this paper, we discuss the relationship between k-semi-stratifiable spaces and quais-Nagata spaces and some mapping properties of quasi-Nagata spaces. We get following results: sequence-covering closed mapping preserve quasi-Nagata spaces, and finite-to-one open mappings don't preserve quasi-Nagata spaces.
文摘To avoid spatial aliasing problems in broad band high resolution seismic sections, I present a high density migration processing solution. I first analyze the spatial aliasing definition for stack and migration seismic sections and point out the differences between the two. We recognize that migration sections more often show spatial aliasing than stacked sections. Second, from wave propagation theory, I know that migration output is a new spatial sampling process and seismic prestack time migration can provide the high density sampling to prevent spatial aliasing on high resolution migration sections. Using a 2D seismic forward modeling analysis, I have found that seismic spatial aliasing noise can be eliminated by high density spatial sampling in prestack migration. In a 3D seismic data study for Daqing Oilfield in the Songliao Basin, I have also found that seismic sections obtained by high-density spatial sampling (10 ×10 m) in prestack migration have less spatial aliasing noise than those obtained by conventional low density spatial sampling (20 × 40 m) in prestack migration.
文摘Let M(u) be an N function, A=D r+∑r-1k=0a k(x)D k a linear differential operator and W M(A) the Sobolev Orlicz class defined by M(u) and A. In this paper we give the asymptotic estimates of the n K width d n(W M(A),L 2[0,1]) .
文摘In this paper, we introduce the A, weights into the tent space, many important results in the tent space are generalized. Also, new relations between the A, weights and Carleson measures are obtained.
基金supported by the National 973 Program(Grant No.2008CB425704)the National Natural Science Foundation of China(Grant No.40975049)
文摘According to the "jacking-up" theory, which relates the cause of earthquakes to outer core convection ascension bodies, the crust will gradually recover after an earthquake. In such cases, the crust is stretched, the underground temperature is reduced, precipitation decreases, and drought occurs. In this paper, precipitation is compared with ground temperature and seismic data to determine the spatial and temporal relationship between earthquakes and subsequent droughts. Our objective is to develop a new method of drought prediction. With a few exceptions in location, the analysis of the first drought to occur after the Ms 〉 7 earthquakes in China's Mainland and the adjacent areas since 1950 shows that droughts tended to occur in regions near earthquake epicenters and in the eastern regions of the epicenters at the same latitude within six months after the earthquakes. In addition, and the differences between the starting time of the earthquakes and the droughts nearly share the same probability of 0 to 6 months. After careful analysis of 34 Ms 〉 6.5 earthquakes occurring in western China from 1980 to 2011, we determined that a second drought tends to occur approximately six months following the first drought, indicating a quasi-half-year period. Moreover, the duration of the quasi-half-year fluctuation increases with the magnitude of earthquake, at approximately 2.5 years for Ms 6.5 earthquake and approximately 5 years for Ms 8 earthquake.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 41401078, 91025011, 41222001)National Basic Research Program of China (2013CBA01806)
文摘Snowline change and snow cover distribution patterns are still poorly understood in steep alpine basins of the Qilian Mountainous region because fast changes in snow cover cannot be observed by current sensing methods due to their short time scale. To address this issue of daily snowline and snow cover observations, a ground- based EOS 7D camera and four infrared digital hunting video cameras (LTL5210A) were installed around the Hulugou river basin (HRB) in the Qilian Mountains along northeastern margin of the Tibetan Plateau (38°15′54″N, 99°52′53″E) in September 2011. Pictures taken with the EOS 7D camera were georeferenced and the data from four LIL521oA cameras and snow depth sensors were used to assist snow cover estimation. The results showed that the time-lapse photography can be very useful and precise for monitoring snowline and snow cover in mountainous regions. The snowline and snow cover evolution at this basin can be precisely captured at daily scale. In HRB snow cover is mainly established after October, and the maximum snow cover appeared during February and March. The consistent rise of the snowline and decrease in snow cover appeared after middle part of March. This melt process is strongly associated with air temperature increase.