In this study, we investigated the spatial characteristics of the rate of soil distribution and the mechanism of major element migration in a typical karst hillslope in Guangxi Province, Southwestern China. Soil redis...In this study, we investigated the spatial characteristics of the rate of soil distribution and the mechanism of major element migration in a typical karst hillslope in Guangxi Province, Southwestern China. Soil redistribution was examined using (137~)Cs technique under different hillslope components. With the combination of geochemical methods, the migration characteristics of major elements in soils of three hillslope components in both the horizontal and vertical directions were determined. Thirty-seven soil samples were collected and analyzed for 137 Cs and the major elements were determined. By using the profile distribution model the mean soil redistribution rates were found to be-17.01, 0.40 and-23.30t ha-1 yr-1 in the summit(BYSD), shoulder(BYSY) and toeslope(BYSJ) components of the studied hillslope, respectively. In comparison to BYSD, the sesquioxides of Fe_2O_3 and TiO_2 tend to be enriched, whereas the alkalis(CaO, MgO, Na_2O and K_2O) tend to be depleted, both in the shoulder and toeslope components. Due to human and animal activities, the contents of CaO, MgO, K_2O and Na_2O have somewhat increased within the topsoil. The results indicated that (137~)Cs activities are significantly correlated with clay particles and organic matter, and are affected by the pedogenic process and vegatation. Overall, it maybe necessary to use techniques such as (137~)Cs to investigate soil erosion with the combination of geochemical methods.展开更多
This study quantifies the main characteristics of a terrain-following, G-coordinate through mathematical analyses of its covariant and contravariant basis vectors as well as the vertical coordinate of σ. A 3-D schema...This study quantifies the main characteristics of a terrain-following, G-coordinate through mathematical analyses of its covariant and contravariant basis vectors as well as the vertical coordinate of σ. A 3-D schematic of the σ-coordinate in a curvilinear coordinate system is provided in this study. The characteristics of the basis vectors were broken down into their "local vector charac- teristics" and "spatial distribution characteristics", and the exact expressions of the covariant; in addition, the con- travariant basis vectors of the G-coordinate used to eluci- date their detailed characteristics were properly solved. Through rewriting the expression of the vertical coordi- nate of G, a mathematical expression of all the cr-coor- dinate surfaces was found, thereby quantifying the so- called terrain-following characteristics and lack of flexi- bility to adjust the slope variation of G-coordinate sur- faces for the classic definition of G. Finally, an analysis on the range value of the vertical coordinate demonstrated that the general value range of G could be obtained by eliminating the G-coordinate surfaces below the Earth's surface. All these quantitative descriptions of the charac- teristics of G-coordinate were the foundation for improv- ing the G-coordinate or creating a new one.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)grants(Grant Nos.41473122,41073096)the National Key Basic Research Program of China(2013CB956702)the Hundred Talents Program of the Chinese Academy of Sciences
文摘In this study, we investigated the spatial characteristics of the rate of soil distribution and the mechanism of major element migration in a typical karst hillslope in Guangxi Province, Southwestern China. Soil redistribution was examined using (137~)Cs technique under different hillslope components. With the combination of geochemical methods, the migration characteristics of major elements in soils of three hillslope components in both the horizontal and vertical directions were determined. Thirty-seven soil samples were collected and analyzed for 137 Cs and the major elements were determined. By using the profile distribution model the mean soil redistribution rates were found to be-17.01, 0.40 and-23.30t ha-1 yr-1 in the summit(BYSD), shoulder(BYSY) and toeslope(BYSJ) components of the studied hillslope, respectively. In comparison to BYSD, the sesquioxides of Fe_2O_3 and TiO_2 tend to be enriched, whereas the alkalis(CaO, MgO, Na_2O and K_2O) tend to be depleted, both in the shoulder and toeslope components. Due to human and animal activities, the contents of CaO, MgO, K_2O and Na_2O have somewhat increased within the topsoil. The results indicated that (137~)Cs activities are significantly correlated with clay particles and organic matter, and are affected by the pedogenic process and vegatation. Overall, it maybe necessary to use techniques such as (137~)Cs to investigate soil erosion with the combination of geochemical methods.
基金supported by the National Natural Science Foundation of China under Grant Nos. 40821092,40633016,and 40875022
文摘This study quantifies the main characteristics of a terrain-following, G-coordinate through mathematical analyses of its covariant and contravariant basis vectors as well as the vertical coordinate of σ. A 3-D schematic of the σ-coordinate in a curvilinear coordinate system is provided in this study. The characteristics of the basis vectors were broken down into their "local vector charac- teristics" and "spatial distribution characteristics", and the exact expressions of the covariant; in addition, the con- travariant basis vectors of the G-coordinate used to eluci- date their detailed characteristics were properly solved. Through rewriting the expression of the vertical coordi- nate of G, a mathematical expression of all the cr-coor- dinate surfaces was found, thereby quantifying the so- called terrain-following characteristics and lack of flexi- bility to adjust the slope variation of G-coordinate sur- faces for the classic definition of G. Finally, an analysis on the range value of the vertical coordinate demonstrated that the general value range of G could be obtained by eliminating the G-coordinate surfaces below the Earth's surface. All these quantitative descriptions of the charac- teristics of G-coordinate were the foundation for improv- ing the G-coordinate or creating a new one.