期刊文献+
共找到117篇文章
< 1 2 6 >
每页显示 20 50 100
变系数空间分数阶对流-扩散方程的隐式差分逼近 被引量:9
1
作者 马亮亮 田富鹏 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第1期11-14,共4页
在一般对流-扩散方程的基础上,研究了变系数空间分数阶对流-扩散方程的隐式差分逼近格式.利用Grünwald改进型公式和时间、空间一阶差商公式对分数阶导数进行离散,提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点和Lax... 在一般对流-扩散方程的基础上,研究了变系数空间分数阶对流-扩散方程的隐式差分逼近格式.利用Grünwald改进型公式和时间、空间一阶差商公式对分数阶导数进行离散,提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点和Lax等价定理,证明了这个差分格式是无条件稳定的,并且证明了它的收敛性.最后通过数值例子验证了提出的差分格式是可靠和有效的. 展开更多
关键词 对流-扩散方程 分数导数 隐式差分 稳定性 收敛性
下载PDF
两边空间分数阶对流-扩散方程的一种加权显式有限差分方法 被引量:3
2
作者 马亮亮 刘冬兵 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第1期76-82,共7页
考虑两边空间分数阶对流-扩散方程的初边值问题,基于Grünwald公式和移位Grünwald-Letnikov公式,提出一种加权显式有限差分解法.利用傅里叶变换和特征值法,得到差分格式的稳定性.然后使用最大模估计法证明在相同的条件下,所提... 考虑两边空间分数阶对流-扩散方程的初边值问题,基于Grünwald公式和移位Grünwald-Letnikov公式,提出一种加权显式有限差分解法.利用傅里叶变换和特征值法,得到差分格式的稳定性.然后使用最大模估计法证明在相同的条件下,所提出的差分格式是收敛的.最后通过数值例子说明所提出的差分格式是可靠和有效的,并对方程的数值解与精确解进行比较,验证了文中的理论结果. 展开更多
关键词 分数对流-扩散方程 空间分数导数 加权差分格式 收敛性 稳定性 有限差分法
下载PDF
空间分数阶对流-扩散方程的有限差分法及误差分析 被引量:1
3
作者 丁志清 《五邑大学学报(自然科学版)》 CAS 2010年第4期53-58,共6页
针对一类分数阶对流扩散方程,给出了分数阶Cranck-Nicolson数值求值方法,并进行了收敛性分析和对空间方向的外推研究,给出了阐述理论分析结果的2个数值实验.
关键词 空间分数阶对流-扩散方程 Cranck-Nicolson方法 收敛性
下载PDF
变系数空间分数阶对流-扩散方程的有限差分解法 被引量:13
4
作者 马亮亮 《沈阳大学学报(自然科学版)》 CAS 2013年第4期341-344,共4页
考虑了一个变系数空间分数阶对流-扩散方程.这个方程是将一般的对流-扩散方程中的空间二阶导数用β(1<β≤2)阶导数代替.提出了一个隐式差分格式,验证了这个差分格式是无条件稳定的,并证明了它的收敛性,其收敛阶为o(τ+h),最后给出... 考虑了一个变系数空间分数阶对流-扩散方程.这个方程是将一般的对流-扩散方程中的空间二阶导数用β(1<β≤2)阶导数代替.提出了一个隐式差分格式,验证了这个差分格式是无条件稳定的,并证明了它的收敛性,其收敛阶为o(τ+h),最后给出了数值例子. 展开更多
关键词 对流-扩散方程 分数导数 隐式差分 稳定性 收敛性
下载PDF
Riesz空间分数阶对流-扩散方程的一种新型Crank-Nicolson有限体积法
5
作者 屈威 王庆勇 《应用数学学报》 CSCD 北大核心 2024年第3期402-416,共15页
分数阶微分方程作为整数阶微分方程的推广,近年来被广泛应用于科学和工程领域,从而受到越来越多学者的关注.本文提出一种新型Crank-Nicolson有限体积方法求解具有Dirichlet齐次边界的Riesz空间分数阶对流-扩散方程.为了得到Riesz空间分... 分数阶微分方程作为整数阶微分方程的推广,近年来被广泛应用于科学和工程领域,从而受到越来越多学者的关注.本文提出一种新型Crank-Nicolson有限体积方法求解具有Dirichlet齐次边界的Riesz空间分数阶对流-扩散方程.为了得到Riesz空间分数阶对流-扩散方程的离散格式,在时间层上,利用Crank-Nicolson方法对一阶时间偏导数进行离散.在空间层上,利用有限体积法近似对流项的一阶空间偏导数和扩散项的Riesz空间分数阶偏导数.更进一步,我们也得到了该Crank-Nicolson有限体积离散格式的稳定性和收敛性两个主要理论结果.证明了该离散格式是无条件稳定的,以及在离散L2-范数下的收敛阶为O(h2+τ2),其中h和τ分别为空间和时间上的步长.最后,通过数值试验验证了该离散格式理论结果的正确性. 展开更多
关键词 Riesz空间分数阶对流-扩散方程 Crank-Nicolson方法 有限体积法 无条件稳定性 收敛性 离散L2-范数
原文传递
离散Riesz空间分数阶对流-扩散方程中线性方程组的τ矩阵预处理方法
6
作者 唐世平 黄玉梅 《计算数学》 CSCD 北大核心 2023年第4期483-496,共14页
在Riesz空间分数阶对流-扩散方程的数值求解中,通过采用加权移位的Grünwald差分格式对其空间导数进行离散以及Crank-Nicolson格式对其时间导数进行离散,得到一个系数矩阵为单位矩阵与两个对称正定Toeplitz矩阵之和的线性方程组.在... 在Riesz空间分数阶对流-扩散方程的数值求解中,通过采用加权移位的Grünwald差分格式对其空间导数进行离散以及Crank-Nicolson格式对其时间导数进行离散,得到一个系数矩阵为单位矩阵与两个对称正定Toeplitz矩阵之和的线性方程组.在本文中,对该线性方程组,利用其系数矩阵的结构,提出了一种τ预处理矩阵,并采用预处理共轭梯度法求解了该线性方程组.理论分析给出了预处理后系数矩阵的谱分布以及条件数估计.数值实验结果也说明了所构造的预处理矩阵在采用预处理共轭梯度法求解Riesz空间分数阶对流-扩散方程离散后得到的线性方程组的有效性. 展开更多
关键词 Riesz空间分数阶对流-扩散方程 Crank-Nicolson有限差分格式 条件数 τ预处理矩阵 谱分析
原文传递
多项时间分数阶混合扩散-波动方程ADI有限差分法
7
作者 黎丽梅 易云玲 +1 位作者 郭欣雨 郭广源 《湖南理工学院学报(自然科学版)》 CAS 2024年第3期1-7,共7页
用交替方向隐式(ADI)有限差分法研究多项时间分数阶混合扩散-波动方程的数值解,在时间方向上,采用降阶的方法,将扩散项和波动项转化为RL积分项和扩散项,分别使用L2-1_(σ)和L1公式逼近;空间方向结合二阶中心差商离散,并通过数值算例验... 用交替方向隐式(ADI)有限差分法研究多项时间分数阶混合扩散-波动方程的数值解,在时间方向上,采用降阶的方法,将扩散项和波动项转化为RL积分项和扩散项,分别使用L2-1_(σ)和L1公式逼近;空间方向结合二阶中心差商离散,并通过数值算例验证差分格式的有效性. 展开更多
关键词 多项时间分数混合扩散-波动方程 交替方向隐式法 有限差分法
下载PDF
多项时间-两边空间分数阶对流-扩散方程的加权隐式数值解
8
作者 吴春 刘冬兵 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2023年第4期95-106,共12页
考虑多项时间-两边空间分数阶对流-扩散方程的初边值问题,基于移位Grünwald-Letnikov公式,将方程中的空间分数阶导数采用加权平均有限差分法近似,得到一种加权隐式有限差分格式。利用能量估计,得到了该差分格式的稳定性。然后利用... 考虑多项时间-两边空间分数阶对流-扩散方程的初边值问题,基于移位Grünwald-Letnikov公式,将方程中的空间分数阶导数采用加权平均有限差分法近似,得到一种加权隐式有限差分格式。利用能量估计,得到了该差分格式的稳定性。然后利用数学归纳法证明了在相同的条件下,所提出的差分格式是收敛的。最后通过数值例子说明了所提出的差分格式是可靠和有效的,并对方程的数值解和精确解进行了比较,验证了本文的理论结果。 展开更多
关键词 分数对流-扩散方程 空间分数导数 加权隐式格式 收敛性 稳定性 有限差分法
原文传递
双边空间分数阶对流-扩散方程的一种有限差分解法 被引量:13
9
作者 苏丽娟 王文洽 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第10期26-29,共4页
给出双边空间分数阶对流-扩散方程的一种隐式有限差分解法。并证明了这种方法的相容性,无条件稳定性,以及由此得出的收敛性。最后给出数值例子,并对方程的数值解和精确解进行比较。
关键词 双边空间分数阶对流-扩散方程 移位Grnwald-Letnikov公式 有限差分法 稳定性分析
原文传递
时间-空间分数阶对流扩散方程的有限差分解法(英文) 被引量:4
10
作者 张阳 于志玲 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期51-56,共6页
通过对空间分数阶导数采用修正的Grunwald有限差分逼近,给出了数值求解时间-空间分数阶导数对流扩散方程的一种隐式差分格式.证明了格式的兼容性、无条件稳定性及一阶收敛性,并给出了数值算例.
关键词 对流扩散方程 分数导数 隐式差分格式 稳定性 收敛性
下载PDF
一类时间-空间分数阶Klein-Gordon方程的孤立波解
11
作者 陆求赐 王学彬 +1 位作者 张宋传 徐瑞标 《延边大学学报(自然科学版)》 CAS 2023年第1期30-35,共6页
利用1/G展开法对一类时间-空间分数阶Klein-Gordon方程进行了求解,并得到了丰富的行波解.所得解主要为该方程的孤立波解和扭曲波解.选取部分解进行相图分析显示,所得解均是有效的.该研究结果扩展了分数阶Klein-Gordon方程的应用范围.
关键词 时间-空间分数Klein-Gordon方程 1/G展开法 行波变换 保形分数导数 孤立波解
下载PDF
非线性变阶空间-时间分数阶对流-扩散方程的全隐式有限差分格式 被引量:2
12
作者 马亮亮 谭千蓉 刘冬兵 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第5期627-634,共8页
针对非线性变阶空间-时间分数阶对流-扩散方程的初边值问题,提出一种全隐式有限差分格式.首先,分别对Riemann-Liouville型变时间分数阶导数算子和Riemann-Liouville型变空间分数阶导数算子和广义Riesz分数阶导数算子进行离散化处理;然后... 针对非线性变阶空间-时间分数阶对流-扩散方程的初边值问题,提出一种全隐式有限差分格式.首先,分别对Riemann-Liouville型变时间分数阶导数算子和Riemann-Liouville型变空间分数阶导数算子和广义Riesz分数阶导数算子进行离散化处理;然后,通过离散的能量方法证明全隐式有限差分格式的稳定性和收敛性,并验证其收敛阶为O(τ+h);最后,通过数值算例检验该方法.试验结果表明:全隐式有限差分格式求解非线性变阶空间-时间分数阶对流-扩散方程初边值问题是可行和有效的. 展开更多
关键词 空间-时间分数对流-扩散方程 全隐式有限差分格式 收敛性 稳定性 能量方法
下载PDF
两边空间-时间分数阶扩散方程的加权有限差分格式(英文) 被引量:4
13
作者 马维元 刘华 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期41-48,70,共9页
对于空间-时间分数阶扩散方程的初边值问题提出了一种加权差分格式.利用能量估计,得到了差分格式的稳定性.然后使用数学归纳法证明了在相同的条件下,所提出的的格式是收敛的.最后通过一个例子说明了所提出的格式是可靠的、有效的.
关键词 分数扩散方程 空间-时间分数导数 加权差分格式 收敛性 稳定性
下载PDF
Riesz空间分数阶对流扩散方程的一种计算有效求解方法 被引量:2
14
作者 沈淑君 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期20-24,共5页
Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的... Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的标准离散得到包含具有相同分数次幂的矩阵的一个常微分方程组,并利用计算有效的分数阶行方法求解.同时借助于分数阶导数的谱表示和拉普拉斯变换,导出这个Riesz空间分数阶对流扩散方程的解析解.最后给出了数值例子来证实数值方法的有效性. 展开更多
关键词 Riesz空间分数导数 矩阵转换技巧 拉普拉斯变换 对流扩散方程 行方法
下载PDF
一类Riesz空间分数阶时滞扩散微分方程的隐-显差分格式 被引量:2
15
作者 杨水平 刘红良 《湘潭大学自然科学学报》 CAS 2018年第1期27-30,共4页
通过对一类含有非线性时滞项的Riesz分数阶扩散微分方程的线性项采用隐式差分格式离散,对含有时滞非线性项采用显式差分格式离散,构造了求解该问题的隐-显差分格式.并证明了方法是收敛和稳定的.最后还利用外推技巧提高了方法的收敛阶,... 通过对一类含有非线性时滞项的Riesz分数阶扩散微分方程的线性项采用隐式差分格式离散,对含有时滞非线性项采用显式差分格式离散,构造了求解该问题的隐-显差分格式.并证明了方法是收敛和稳定的.最后还利用外推技巧提高了方法的收敛阶,若干的数值结果也验证了本文的理论结果. 展开更多
关键词 含有非线性时滞项的Riesz空间分数扩散微分方程 -显差分格式 收敛性 稳定性 外推方法
下载PDF
时间-空间分数阶扩散方程 被引量:1
16
作者 朱波 韩宝燕 《江南大学学报(自然科学版)》 CAS 2010年第6期750-752,共3页
讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函... 讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函数,并用Green函数得到有源时间-空间分数阶扩散方程Cauchy问题的解。 展开更多
关键词 时间-空间分数扩散方程 FOURIER变换 LAPLACE变换 GREEN函数 Mittag-Leffler函数
下载PDF
时间分数阶对流扩散方程的有限点法分析
17
作者 陈有玲 《平顶山学院学报》 2023年第5期15-22,共8页
基于有限差分法得到时间离散格式和利用有限点法建立离散代数系统,提出了数值求解时间分数对流扩散方程的无网格有限点法,详细推导了时间离散格式是无条件稳定的和该方法的理论误差估计.数值算例验证了理论结果,并验证了该方法的有效性... 基于有限差分法得到时间离散格式和利用有限点法建立离散代数系统,提出了数值求解时间分数对流扩散方程的无网格有限点法,详细推导了时间离散格式是无条件稳定的和该方法的理论误差估计.数值算例验证了理论结果,并验证了该方法的有效性和收敛性. 展开更多
关键词 无网格有限点法 时间分数对流扩散方程 稳定 误差估计
下载PDF
时间空间分数阶对流-弥散方程的基本解
18
作者 黄凤辉 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2009年第4期392-396,共5页
考虑两类时间空间分数阶对流-弥散方程,它们是由传统的对流-弥散方程推广而来(时间一阶导数用μ∈(0,1]阶Caputo导数代替,空间一阶、二阶导数分别用α∈(0,1]和β∈(1,2]阶Riesz或Caputo导数代替).它们的Cauchy问题的基本解可以通过Lapl... 考虑两类时间空间分数阶对流-弥散方程,它们是由传统的对流-弥散方程推广而来(时间一阶导数用μ∈(0,1]阶Caputo导数代替,空间一阶、二阶导数分别用α∈(0,1]和β∈(1,2]阶Riesz或Caputo导数代替).它们的Cauchy问题的基本解可以通过Laplace-Fourier变换得出,其表达式可以通过适当的变形求得,并证明了其空间概率密度的性质. 展开更多
关键词 对流-弥散方程 CAPUTO分数导数 基本解 LAPLACE变换 FOURIER变换
下载PDF
空间—时间分数阶对流扩散方程的分析解及基本解的性质
19
作者 郑达艺 《福建教育学院学报》 2007年第10期103-106,共4页
本文考虑空间时间分数阶对流—扩散方程(即在一个标准对流—扩散方程中,用β(0<β≤1)阶导数代替时间一阶导数,用a(1<a≤2)阶导数代替空间二阶导数,用γ(0<γ≤1)阶导数代替空间二阶导数的分析解,通过Fourier变换,Laplace变换... 本文考虑空间时间分数阶对流—扩散方程(即在一个标准对流—扩散方程中,用β(0<β≤1)阶导数代替时间一阶导数,用a(1<a≤2)阶导数代替空间二阶导数,用γ(0<γ≤1)阶导数代替空间二阶导数的分析解,通过Fourier变换,Laplace变换以及其逆变换等方法求得方程的分析解,并对其基本解进行讨论。 展开更多
关键词 空间时间分数对流-扩散方程 FOURIER变换 LAPLACE变换
下载PDF
含有Riesz-Feller位势的双边空间分数阶Lévy-Feller扩散方程的加权有限差分格式
20
作者 马亮亮 刘冬兵 《井冈山大学学报(自然科学版)》 2014年第5期18-21,共4页
考虑了一类含有Riesz-Feller位势的两边空间分数阶Lévy-Feller扩散方程的差分问题。利用分数阶微分算子的等价性,提出了一种加权有限差分解法,并证明了所提出的差分格式是稳定和收敛的。最后通过一个数值例子说明了所提出的差分格... 考虑了一类含有Riesz-Feller位势的两边空间分数阶Lévy-Feller扩散方程的差分问题。利用分数阶微分算子的等价性,提出了一种加权有限差分解法,并证明了所提出的差分格式是稳定和收敛的。最后通过一个数值例子说明了所提出的差分格式是有效和可靠的。 展开更多
关键词 Lévy-Feller扩散方程 空间分数导数 稳定性 收敛性
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部