期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
空间分数阶Gray-Scott方程的数值算法
1
作者 刘将华 谢彩云 郑子晴 《应用数学进展》 2023年第3期1120-1129,共10页
本文基于算子分裂方法,提出了求解分数阶Gray-Scott模型的一种高效数值逼近格式。首先采用算子分裂法将原问题分解为线性子问题和非线性子问题:线性子问题采用Crank-Nicolson(CN)格式结合二阶中心差分,建立整体二阶的数值计算格式;非线... 本文基于算子分裂方法,提出了求解分数阶Gray-Scott模型的一种高效数值逼近格式。首先采用算子分裂法将原问题分解为线性子问题和非线性子问题:线性子问题采用Crank-Nicolson(CN)格式结合二阶中心差分,建立整体二阶的数值计算格式;非线性子问题采用CN格式结合Rubin-Graves线性化技术,建立线性化求解格式;并给出算法的稳定性和收敛性分析。最后,通过数值算例验证了算法的有效性。 展开更多
关键词 空间分数阶gray-scott方程 算子分裂 差分方法 Rubin-Graves线性化技术
下载PDF
空间分数阶偏微分方程非标准有限差分方法的稳定性和收敛性
2
作者 王琦 刘子婷 《应用数学》 北大核心 2024年第1期159-170,共12页
本文研究空间分数阶偏微分方程非标准有限差分方法数值解的相关问题.采用Grünwald-Letnikov公式和平移Grünwald-Letnikov公式分别对两个空间分数阶导数进行离散.再运用带有时间和空间步长的分母函数构造非标准有限差分方法.... 本文研究空间分数阶偏微分方程非标准有限差分方法数值解的相关问题.采用Grünwald-Letnikov公式和平移Grünwald-Letnikov公式分别对两个空间分数阶导数进行离散.再运用带有时间和空间步长的分母函数构造非标准有限差分方法.进而利用von Neumann分析方法对差分格式的稳定性和收敛性进行研究,获得了一些新的结果.数值例子验证了非标准有限差分方法用于求解空间分数阶偏微分方程的有效性. 展开更多
关键词 空间分数偏微分方程 非标准有限差分方法 稳定性 收敛性
下载PDF
一类变指数勒贝格空间中分数阶微分方程两点边值问题解的存在性
3
作者 朱佳硕 王立波 《北华大学学报(自然科学版)》 CAS 2024年第2期148-155,共8页
研究一类变指数勒贝格空间L p(·)中具有Riemann-Liouville型导数的非线性分数阶微分方程边值问题。利用分段常值函数,将变指数勒贝格空间转化为经典的勒贝格空间,将问题模型转化为等价的第二类Fredholm积分方程,利用Schauder不动... 研究一类变指数勒贝格空间L p(·)中具有Riemann-Liouville型导数的非线性分数阶微分方程边值问题。利用分段常值函数,将变指数勒贝格空间转化为经典的勒贝格空间,将问题模型转化为等价的第二类Fredholm积分方程,利用Schauder不动点定理,得到了相应边值问题解的存在性结果。 展开更多
关键词 分数微分方程 SCHAUDER不动点定理 变指数勒贝格空间 Riemann-Liouville型导数
下载PDF
分数阶Navier-Stokes方程在Sobolev-Lorentz空间适度解的存在性
4
作者 秦诗轩 何家维 《应用数学》 北大核心 2024年第3期765-778,共14页
本文研究具有Caputo导数的时间分数阶Navier-Stokes方程的Cauchy问题,利用Banach空间的压缩映照原理,获得在齐次Sobolev-Lorentz空间中局部适度解的存在性.分别建立了临界指标与超临界指标情形下Besov空间小初值条件相应的整体和局部适... 本文研究具有Caputo导数的时间分数阶Navier-Stokes方程的Cauchy问题,利用Banach空间的压缩映照原理,获得在齐次Sobolev-Lorentz空间中局部适度解的存在性.分别建立了临界指标与超临界指标情形下Besov空间小初值条件相应的整体和局部适度解存在性理论. 展开更多
关键词 分数Caputo导数 分数Navier-Stokes方程 齐次Sobolev-Lorentz空间 存在性
下载PDF
一类时间-空间分数阶Klein-Gordon方程的孤立波解
5
作者 陆求赐 王学彬 +1 位作者 张宋传 徐瑞标 《延边大学学报(自然科学版)》 CAS 2023年第1期30-35,共6页
利用1/G展开法对一类时间-空间分数阶Klein-Gordon方程进行了求解,并得到了丰富的行波解.所得解主要为该方程的孤立波解和扭曲波解.选取部分解进行相图分析显示,所得解均是有效的.该研究结果扩展了分数阶Klein-Gordon方程的应用范围.
关键词 时间-空间分数Klein-Gordon方程 1/G展开法 行波变换 保形分数导数 孤立波解
下载PDF
分数阶不可压缩Navier-Stokes-Coriolis方程解的整体适定性
6
作者 孙小春 吴育联 徐郜婷 《数学物理学报(A辑)》 CSCD 北大核心 2024年第3期737-745,共9页
该文致力于研究带Coriolis力的分数阶Navier-Stokes方程的Cauchy问题.结合半群S的L^(p)−L^(q)及H˙^(5/2−2α)−L^(q)光滑估计,得到了带Coriolis力的分数阶Navier-Stokes方程解的整体适定性以及u0在齐次Sobolev空间H˙_(σ)^(5/2−2α)(R^... 该文致力于研究带Coriolis力的分数阶Navier-Stokes方程的Cauchy问题.结合半群S的L^(p)−L^(q)及H˙^(5/2−2α)−L^(q)光滑估计,得到了带Coriolis力的分数阶Navier-Stokes方程解的整体适定性以及u0在齐次Sobolev空间H˙_(σ)^(5/2−2α)(R^(3))足够小时的分数阶Navier-Stokes方程具有唯一的整体mild解. 展开更多
关键词 整体适定性 分数 NAVIER-STOKES 方程 齐次 SOBOLEV 空间 CORIOLIS
下载PDF
时空分数阶Navier-Stokes方程解的存在性
7
作者 姜自文 王丽真 王路生 《纯粹数学与应用数学》 2024年第3期485-498,共14页
本文研究了时空分数阶不可压缩Navier-Stokes方程的Cauchy问题,并在Marcinkiewicz空间中建立了该方程mild解的存在唯一性.具体地,利用Mittag-Leffler算子在Marcinkiewicz空间的弱L^(r)-弱L^(q)估计以及关于时间的连续性和不动点定理,在B... 本文研究了时空分数阶不可压缩Navier-Stokes方程的Cauchy问题,并在Marcinkiewicz空间中建立了该方程mild解的存在唯一性.具体地,利用Mittag-Leffler算子在Marcinkiewicz空间的弱L^(r)-弱L^(q)估计以及关于时间的连续性和不动点定理,在BC((0,∞);L_(σ)^(d/α-1,∞)(R^(d)))空间得到了小初值条件下该方程的全局mild解的存在唯一性. 展开更多
关键词 时空分数Navier-Stokes方程 Marcinkiewicz空间 MILD解 存在唯一性
下载PDF
带有分数阶耗散的MHD方程在Besov空间的正则性准则
8
作者 林隆 《应用数学进展》 2023年第4期1461-1466,共6页
本文主要研究了不带密度且速度场带有分数阶耗散的三维MHD流体方程组在齐次Besov空间中的一个正则性准则。证明了当方程组(1.1)的弱解 满足条件(2.1)时,方程组(1.1)在(0,T]上是正则的。
关键词 MHD流体方程 齐次Besov空间 分数耗散 正则性准则
下载PDF
基于时间-空间分数阶偏微分方程的图像去噪模型 被引量:9
9
作者 黄果 许黎 +1 位作者 陈庆利 蒲亦非 《系统工程与电子技术》 EI CSCD 北大核心 2012年第8期1741-1752,共12页
为了在去噪的同时更多地保留图像的细节信息,将分数阶微积分理论和梯度下降流有效结合,提出了分数阶梯度下降流的概念,并证明了能量泛函的分数阶梯度下降流在一定微分阶次范围内是收敛的。在此基础上,将时间因素引入到改进的基于空间分... 为了在去噪的同时更多地保留图像的细节信息,将分数阶微积分理论和梯度下降流有效结合,提出了分数阶梯度下降流的概念,并证明了能量泛函的分数阶梯度下降流在一定微分阶次范围内是收敛的。在此基础上,将时间因素引入到改进的基于空间分数阶偏微分方程的去噪模型中,从而构建了基于时间-空间分数阶偏微分方程的去噪模型,该模型实现了在时间方向上和空间平面内的同时去噪。实验结果表明,提出的基于时间-空间分数阶偏微分方程的图像去噪模型较基于空间分数阶偏微分方程的图像去噪模型不仅可以提高信噪比,而且可以大幅减少图像获得最大信噪比所需要的迭代次数。 展开更多
关键词 分数微积分 时间-空间分数偏微分方程 分数梯度 变分法 泛函极值 图像去噪
下载PDF
二维变系数空间分数阶电报方程数值解 被引量:6
10
作者 马亮亮 刘冬兵 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2014年第3期429-432,共4页
针对二维变系数空间分数阶电报方程,利用Grünwald-Letnikov分数阶导数的定义,在交替方向法的基础上提出了一种分数阶Peaceman-Rachford差分格式.通过Gerschgorin定理和Lax等价定理证明了所提出的分数阶Peaceman-Rachford差分格式... 针对二维变系数空间分数阶电报方程,利用Grünwald-Letnikov分数阶导数的定义,在交替方向法的基础上提出了一种分数阶Peaceman-Rachford差分格式.通过Gerschgorin定理和Lax等价定理证明了所提出的分数阶Peaceman-Rachford差分格式是无条件稳定和收敛的.数值试验表明:分数阶Peaceman-Rachford差分格式是有效和可靠的. 展开更多
关键词 电报方程 空间分数 稳定性 收敛性 Lax等价定理 Gerschgorin定理 分数Peaceman-Rachford差分格式 交替方向法
下载PDF
空间分数阶扩散方程的超线性收敛离散格式 被引量:4
11
作者 章红梅 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期464-468,共5页
考虑了空间分数阶扩散方程的数值解,构造了一个隐式差分离散格式,证明了此格式是无条件稳定的,且关于空间步长是超线性收敛的.最后,给出一个数值例子说明本文的理论分析是正确的,所构造的离散格式是有效的.
关键词 空间分数扩散方程 CAPUTO导数 Riemann-Liouville分数导数 积分
下载PDF
一类n维空间Riesz分数阶扩散方程的解析解 被引量:4
12
作者 马亮亮 刘冬兵 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期506-509,共4页
文章讨论了n维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义了n维分数阶拉普拉斯算子,并给出了分数阶拉普拉斯算子与Riesz分数阶导数之间的关系,最后用谱表示法导出了n维空间Riesz分数阶扩散方程在齐次和非齐次情况下,在有界... 文章讨论了n维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义了n维分数阶拉普拉斯算子,并给出了分数阶拉普拉斯算子与Riesz分数阶导数之间的关系,最后用谱表示法导出了n维空间Riesz分数阶扩散方程在齐次和非齐次情况下,在有界区域上满足一定初边值条件的基本解。 展开更多
关键词 Riesz分数导数 空间分数扩散方程 Riemann-Liouville分数导数 解析解
下载PDF
两边空间-时间分数阶扩散方程的加权有限差分格式(英文) 被引量:4
13
作者 马维元 刘华 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期41-48,70,共9页
对于空间-时间分数阶扩散方程的初边值问题提出了一种加权差分格式.利用能量估计,得到了差分格式的稳定性.然后使用数学归纳法证明了在相同的条件下,所提出的的格式是收敛的.最后通过一个例子说明了所提出的格式是可靠的、有效的.
关键词 分数扩散方程 空间-时间分数导数 加权差分格式 收敛性 稳定性
下载PDF
变分数阶粘弹波动方程最小二乘快速解法 被引量:1
14
作者 赵强 朱成宏 +1 位作者 姜大建 魏哲枫 《石油物探》 CSCD 北大核心 2023年第2期258-270,共13页
由于分数阶粘弹波动方程存在变分数阶拉普拉斯算子,其数值求解需要对不同品质因子的空间任意点均进行全域的正反傅里叶变换,因而计算量巨大,难以满足实际生产需求。通过引入最小二乘理论,构建变分数阶空间波数混合域算子与波数域算子间... 由于分数阶粘弹波动方程存在变分数阶拉普拉斯算子,其数值求解需要对不同品质因子的空间任意点均进行全域的正反傅里叶变换,因而计算量巨大,难以满足实际生产需求。通过引入最小二乘理论,构建变分数阶空间波数混合域算子与波数域算子间的逼近关系,将空间波数混合域变分数阶算子分解为波数域常分数阶算子与空间域算子的形式,有效避免直接求取空间波数混合域算子时计算量大的问题,从而构建变分数阶粘弹波动方程的常分数阶求解形式,实现变分数阶粘弹波动方程快速求解。数值模拟计算结果表明,在品质因子非均值的情况下,该方法的计算精度优于平均品质因子模拟方法,计算量小于分块模拟方法,且提速比随着地下品质因子复杂度的提高而更加明显,在保证精度的前提下可大幅提高粘弹波场模拟效率,有利于后续相应高效粘弹成像算法的开发。 展开更多
关键词 粘弹波场数值模拟 分数拉普拉斯算子 粘弹波动方程 最小二乘理论 空间波数混合域算子 品质因子 计算效率
下载PDF
两边空间分数阶对流-扩散方程的一种加权显式有限差分方法 被引量:3
15
作者 马亮亮 刘冬兵 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第1期76-82,共7页
考虑两边空间分数阶对流-扩散方程的初边值问题,基于Grünwald公式和移位Grünwald-Letnikov公式,提出一种加权显式有限差分解法.利用傅里叶变换和特征值法,得到差分格式的稳定性.然后使用最大模估计法证明在相同的条件下,所提... 考虑两边空间分数阶对流-扩散方程的初边值问题,基于Grünwald公式和移位Grünwald-Letnikov公式,提出一种加权显式有限差分解法.利用傅里叶变换和特征值法,得到差分格式的稳定性.然后使用最大模估计法证明在相同的条件下,所提出的差分格式是收敛的.最后通过数值例子说明所提出的差分格式是可靠和有效的,并对方程的数值解与精确解进行比较,验证了文中的理论结果. 展开更多
关键词 分数对流-扩散方程 空间分数导数 加权差分格式 收敛性 稳定性 有限差分法
下载PDF
空间分数阶扩散方程的隐式高精度方法 被引量:3
16
作者 蔡新 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期317-321,共5页
在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程.我们提出一个在时间和空间都具有二阶精度的隐式方法,这个方法基于古典的C... 在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程.我们提出一个在时间和空间都具有二阶精度的隐式方法,这个方法基于古典的Crank-Nicholson方法与空间外推方法,该隐式方法是无条件稳定和收敛的.最后给出一些数值例子来证实格式是高阶收敛的,此技巧可应用于解其它分数阶微分方程. 展开更多
关键词 空间分数扩散方程 隐式方法 精度 稳定性 收敛性
下载PDF
空间分数阶Edwards-Wilkinson方程的显式差分近似 被引量:4
17
作者 马亮亮 田富鹏 《沈阳大学学报(自然科学版)》 CAS 2013年第3期250-252,共3页
考虑一种空间分数阶Edwards-Wilkinson方程,这个方程是将一般的空间二阶导数用α(1<α≤2)阶导数代替.利用G算法对空间二阶导数进行离散,构建了空间分数阶Edwards-Wilkinson方程的显式有限差分格式,并证明了此差分格式是无条件稳定... 考虑一种空间分数阶Edwards-Wilkinson方程,这个方程是将一般的空间二阶导数用α(1<α≤2)阶导数代替.利用G算法对空间二阶导数进行离散,构建了空间分数阶Edwards-Wilkinson方程的显式有限差分格式,并证明了此差分格式是无条件稳定和收敛的,且具有o(τ)+o(h)收敛阶. 展开更多
关键词 空间分数 Edwards—Wilkinson方程 差分格式 稳定性 收敛性
下载PDF
加权空间中带乘性噪声的随机分数阶非自治Ginzburg-Landau方程 被引量:1
18
作者 王云肖 舒级 +2 位作者 杨袁 李倩 汪春江 《四川师范大学学报(自然科学版)》 CAS 北大核心 2019年第4期491-500,共10页
考虑带乘性噪声的随机分数阶非自治Ginzburg-Landau方程在加权空间 Lρ^2( R^n )中的渐近性质.首先将随机偏微分方程转化为仅含随机参数的随机方程,然后对该方程的解进行先验估计,并通过尾估计得到渐近紧性成立,从而随机动力系统的紧性... 考虑带乘性噪声的随机分数阶非自治Ginzburg-Landau方程在加权空间 Lρ^2( R^n )中的渐近性质.首先将随机偏微分方程转化为仅含随机参数的随机方程,然后对该方程的解进行先验估计,并通过尾估计得到渐近紧性成立,从而随机动力系统的紧性成立,最后证明 Lρ^2( R^n )中随机吸引子的存在性. 展开更多
关键词 随机分数Ginzburg-Landau方程 随机动力系统 随机吸引子 乘性噪声 加权空间
下载PDF
Riesz空间分数阶对流扩散方程的一种计算有效求解方法 被引量:2
19
作者 沈淑君 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期20-24,共5页
Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的... Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的标准离散得到包含具有相同分数次幂的矩阵的一个常微分方程组,并利用计算有效的分数阶行方法求解.同时借助于分数阶导数的谱表示和拉普拉斯变换,导出这个Riesz空间分数阶对流扩散方程的解析解.最后给出了数值例子来证实数值方法的有效性. 展开更多
关键词 Riesz空间分数导数 矩阵转换技巧 拉普拉斯变换 对流一扩散方程 行方法
下载PDF
Riesz空间分布阶的分数阶扩散方程的数值模拟 被引量:2
20
作者 陈景华 陈雪娟 《集美大学学报(自然科学版)》 CAS 2021年第2期97-103,共7页
提出一种求解Riesz空间分布阶的分数阶扩散方程的数值方法。利用辛普森数值求积公式,将分布阶微分方程离散为一个多项分数阶导数的微分方程;利用四阶差分格式求解此具有多项分数阶导数的微分方程,并运用能量法分析数值格式的稳定性和收... 提出一种求解Riesz空间分布阶的分数阶扩散方程的数值方法。利用辛普森数值求积公式,将分布阶微分方程离散为一个多项分数阶导数的微分方程;利用四阶差分格式求解此具有多项分数阶导数的微分方程,并运用能量法分析数值格式的稳定性和收敛性。同时,给出数值例子,说明所建立的数值离散格式的有效性。 展开更多
关键词 空间分布 分数微分方程 稳定性 收敛性 数值离散
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部