Massive multiple input and multiple output(MIMO) is a key technology of the fifth generation(5 G) wireless communication systems, which brings various advantages, such as high spectral efficiency and energy efficiency...Massive multiple input and multiple output(MIMO) is a key technology of the fifth generation(5 G) wireless communication systems, which brings various advantages, such as high spectral efficiency and energy efficiency. In MIMO system, spatial modulation(SM) has recently emerged as a new transmission method. In this paper, in order to improve the security in SM-MIMO, a physical layer encryption approach named chaotic antenna-index three-dimensional modulation and constellation points rotated(CATMCPR) encryption scheme is proposed, which utilizes the chaotic theory and spatial modulation techniques. The conventional physical-layer encryption in SM-MIMO suffers from spectral efficiency(SE) performance degradation and usually needs a preshared key, prior channel state information(CSI) or excess jamming power. By contrast, we show that the CATMCPR scheme can not only achieve securely communication but also improve above drawbacks. We evaluate the performances of the proposed scheme by an analysis and computer simulations.展开更多
A novel image encryption scheme based on the modified skew tent map was proposed in this paper. In the key generating procedure, the algorithm generates a plaintext-dependent secret keys set. In the encryption process...A novel image encryption scheme based on the modified skew tent map was proposed in this paper. In the key generating procedure, the algorithm generates a plaintext-dependent secret keys set. In the encryption process, the diffusion operation with cipher output feedback is introduced. Thus, cipher-irmge is sensitive to both initial keys and plaintext through only one round diffusion operation. The key space is large. As a resuk, the algorithm can effectively resist differential attacks, statistical attacks, brute-force attacks, known plaintext and chosen plaintext attacks. Perforrmnce test and security analysis demonstrates that this algorithm is eficient and reliable, with high potential to be adopted for secure comnmnications.展开更多
Real-time encryption and decryption of digital images stored on end-user devices is a challenging task due to the inherent features of the images. Traditional software encryption applications generally suffered from t...Real-time encryption and decryption of digital images stored on end-user devices is a challenging task due to the inherent features of the images. Traditional software encryption applications generally suffered from the expense of user con- venience, performance efficiency, and the level of security provided. To overcome these limitations, the concept of transparent encryption has been proposed. This type of encryption mechanism can be implemented most efficiently with kernel file systems. However, this approach has some disadvantages since developing a new file system and attaching it in the kernel level requires a deep understanding of the kernel internal data structure. A filesystem in userspace (FUSE) can be used to bridge the gap. Never- theless, ctwrent implementations of cryptographic FUSE-based file systems suffered from several weaknesses that make them less than ideal for deployment. This paper describes the design and implementation of ImgFS, a fully transparent cryptographic file system that resides on user space. ImgFS can provide a sophisticated way to access, manage, and monitor all encryption and key management operations for image files stored on the local disk without any interaction from the user. The development of ImgFS has managed to solve weaknesses that have been identified on cryptographic FUSE-based implementations. Experiments were carried out to measure the performance of ImgFS over image files' read and write against the cryptographic service, and the results indicated that while ImgFS has managed to provide higher level of security and transparency, its performance was competitive with other established cryptographic FUSE-based schemes of high performance.展开更多
Passive Faraday-mirror(PFM) attack is based on imperfect Faraday mirrors in practical quantum cryptography systems and a set of three-dimensional Positive Operator-Valued Measure(POVM) operators plays an important rol...Passive Faraday-mirror(PFM) attack is based on imperfect Faraday mirrors in practical quantum cryptography systems and a set of three-dimensional Positive Operator-Valued Measure(POVM) operators plays an important role in this attack.In this paper,we propose a simple scheme to implement the POVM in PFM attack on an FaradayMichelson quantum cryptography system.Since the POVM can not be implemented directly with previous methods,in this scheme it needs to expand the states sent by Alice and the POVM operators in the attack into four-dimensional Hilbert space first,without changing the attacking effect by calculation.Based on the methods proposed by Ahnert and Payne,the linear-optical setup for implementing the POVM operators is derived.At last,the complete setup for realizing the PFM attack is presented with all parameters.Furthermore,our scheme can also be applied to realize PFM attack on a plug-and-play system by changing the parameters in the setup.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 61502518,61372098 and 61702536
文摘Massive multiple input and multiple output(MIMO) is a key technology of the fifth generation(5 G) wireless communication systems, which brings various advantages, such as high spectral efficiency and energy efficiency. In MIMO system, spatial modulation(SM) has recently emerged as a new transmission method. In this paper, in order to improve the security in SM-MIMO, a physical layer encryption approach named chaotic antenna-index three-dimensional modulation and constellation points rotated(CATMCPR) encryption scheme is proposed, which utilizes the chaotic theory and spatial modulation techniques. The conventional physical-layer encryption in SM-MIMO suffers from spectral efficiency(SE) performance degradation and usually needs a preshared key, prior channel state information(CSI) or excess jamming power. By contrast, we show that the CATMCPR scheme can not only achieve securely communication but also improve above drawbacks. We evaluate the performances of the proposed scheme by an analysis and computer simulations.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China under Grants No. 61073187 and No. 61161006 the Hunan Provincial Natural Science Foundation of China under Grant No. 10JJ6093 and the Hunan Provincial Science and Technology Program under Ccant No. 2010GK2003.
文摘A novel image encryption scheme based on the modified skew tent map was proposed in this paper. In the key generating procedure, the algorithm generates a plaintext-dependent secret keys set. In the encryption process, the diffusion operation with cipher output feedback is introduced. Thus, cipher-irmge is sensitive to both initial keys and plaintext through only one round diffusion operation. The key space is large. As a resuk, the algorithm can effectively resist differential attacks, statistical attacks, brute-force attacks, known plaintext and chosen plaintext attacks. Perforrmnce test and security analysis demonstrates that this algorithm is eficient and reliable, with high potential to be adopted for secure comnmnications.
基金Project partly supported by the Ministry of Higher Education of Malaysia under Grant LRGS/TD/2011/UKM/ICT/02
文摘Real-time encryption and decryption of digital images stored on end-user devices is a challenging task due to the inherent features of the images. Traditional software encryption applications generally suffered from the expense of user con- venience, performance efficiency, and the level of security provided. To overcome these limitations, the concept of transparent encryption has been proposed. This type of encryption mechanism can be implemented most efficiently with kernel file systems. However, this approach has some disadvantages since developing a new file system and attaching it in the kernel level requires a deep understanding of the kernel internal data structure. A filesystem in userspace (FUSE) can be used to bridge the gap. Never- theless, ctwrent implementations of cryptographic FUSE-based file systems suffered from several weaknesses that make them less than ideal for deployment. This paper describes the design and implementation of ImgFS, a fully transparent cryptographic file system that resides on user space. ImgFS can provide a sophisticated way to access, manage, and monitor all encryption and key management operations for image files stored on the local disk without any interaction from the user. The development of ImgFS has managed to solve weaknesses that have been identified on cryptographic FUSE-based implementations. Experiments were carried out to measure the performance of ImgFS over image files' read and write against the cryptographic service, and the results indicated that while ImgFS has managed to provide higher level of security and transparency, its performance was competitive with other established cryptographic FUSE-based schemes of high performance.
基金Supported by National Natural Science Foundation of China under Grant Nos.61472446,U1204602National High Technology Research and Development Program of China under Grant No.2011AA010803the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing under Grant No.2013A14
文摘Passive Faraday-mirror(PFM) attack is based on imperfect Faraday mirrors in practical quantum cryptography systems and a set of three-dimensional Positive Operator-Valued Measure(POVM) operators plays an important role in this attack.In this paper,we propose a simple scheme to implement the POVM in PFM attack on an FaradayMichelson quantum cryptography system.Since the POVM can not be implemented directly with previous methods,in this scheme it needs to expand the states sent by Alice and the POVM operators in the attack into four-dimensional Hilbert space first,without changing the attacking effect by calculation.Based on the methods proposed by Ahnert and Payne,the linear-optical setup for implementing the POVM operators is derived.At last,the complete setup for realizing the PFM attack is presented with all parameters.Furthermore,our scheme can also be applied to realize PFM attack on a plug-and-play system by changing the parameters in the setup.